Cargando…
Spectral control of elastic dynamics in metallic nano-cavities
We show how the elastic response of metallic nano-cavities can be tailored by tuning the interplay with an underlying phononic superlattice. In particular, we exploit ultrafast optical excitation in order to address a resonance mode in a tungsten thin film, grown on top of a periodic MgO/ZrO(2) mult...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587714/ https://www.ncbi.nlm.nih.gov/pubmed/28878294 http://dx.doi.org/10.1038/s41598-017-11099-y |
Sumario: | We show how the elastic response of metallic nano-cavities can be tailored by tuning the interplay with an underlying phononic superlattice. In particular, we exploit ultrafast optical excitation in order to address a resonance mode in a tungsten thin film, grown on top of a periodic MgO/ZrO(2) multilayer. Setting up a simple theoretical model, we can explain our findings by the coupling of the resonance in the tungsten to an evanescent surface mode of the superlattice. To demonstrate a second potential benefit of our findings besides characterization of elastic properties of multilayer samples, we show by micromagnetic simulation how a similar structure can be utilized for magneto-elastic excitation of exchange-dominated spin waves. |
---|