Cargando…
MCbiclust: a novel algorithm to discover large-scale functionally related gene sets from massive transcriptomics data collections
The potential to understand fundamental biological processes from gene expression data has grown in parallel with the recent explosion of the size of data collections. However, to exploit this potential, novel analytical methods are required, capable of discovering large co-regulated gene networks....
Autores principales: | Bentham, Robert B., Bryson, Kevin, Szabadkai, Gyorgy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587796/ https://www.ncbi.nlm.nih.gov/pubmed/28911113 http://dx.doi.org/10.1093/nar/gkx590 |
Ejemplares similares
-
Discover hidden splicing variations by mapping personal transcriptomes to personal genomes
por: Stein, Shayna, et al.
Publicado: (2015) -
Workshop on Large-scale Computational Physics on Massively-parallel Computers
por: Herrmann, H J, et al.
Publicado: (1993) -
Large-scale mapping of mammalian transcriptomes identifies conserved genes associated with different cell states
por: Yang, Yang, et al.
Publicado: (2017) -
Large-scale simulation: models, algorithms, and applications
por: Chen, Dan, et al.
Publicado: (2012) -
Adapting algorithms to massively parallel hardware
por: Sioulas, Panagiotis
Publicado: (2016)