Cargando…
Fibrinogen Activates the Capture of Human Plasminogen by Staphylococcal Fibronectin-Binding Proteins
Invasive bacterial pathogens can capture host plasminogen (Plg) and allow it to form plasmin. This process is of medical importance as surface-bound plasmin promotes bacterial spread by cleaving tissue components and favors immune evasion by degrading opsonins. In Staphylococcus aureus, Plg binding...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587908/ https://www.ncbi.nlm.nih.gov/pubmed/28874469 http://dx.doi.org/10.1128/mBio.01067-17 |
Sumario: | Invasive bacterial pathogens can capture host plasminogen (Plg) and allow it to form plasmin. This process is of medical importance as surface-bound plasmin promotes bacterial spread by cleaving tissue components and favors immune evasion by degrading opsonins. In Staphylococcus aureus, Plg binding is in part mediated by cell surface fibronectin-binding proteins (FnBPs), but the underlying molecular mechanism is not known. Here, we use single-cell and single-molecule techniques to demonstrate that FnBPs capture Plg by a sophisticated activation mechanism involving fibrinogen (Fg), another ligand found in the blood. We show that while FnBPs bind to Plg through weak (∼200-pN) molecular bonds, direct interaction of the adhesins with Fg through the high-affinity dock, lock, and latch mechanism dramatically increases the strength of the FnBP-Plg bond (up to ∼2,000 pN). Our results point to a new model in which the binding of Fg triggers major conformational changes in the FnBP protein, resulting in the buried Plg-binding domains being projected and exposed away from the cell surface, thereby promoting strong interactions with Plg. This study demonstrated a previously unidentified role for a ligand-binding interaction by a staphylococcal cell surface protein, i.e., changing the protein orientation to activate a cryptic biological function. |
---|