Cargando…

CD55 and CD59 expression protects HER2-overexpressing breast cancer cells from trastuzumab-induced complement-dependent cytotoxicity

A large proportion (40–60%) of patients with human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer do not benefit from trastuzumab treatment, potentially due to the lack of complement-dependent cytotoxicity (CDC) activation. In the present study, the effect of complement decay...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yu, Yang, Ya-Jun, Wang, Zhu, Liao, Juan, Liu, Mei, Zhong, Xiao-Rong, Zheng, Hong, Wang, Yan-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588148/
https://www.ncbi.nlm.nih.gov/pubmed/28928834
http://dx.doi.org/10.3892/ol.2017.6555
Descripción
Sumario:A large proportion (40–60%) of patients with human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer do not benefit from trastuzumab treatment, potentially due to the lack of complement-dependent cytotoxicity (CDC) activation. In the present study, the effect of complement decay-accelerating factor (CD55) and CD59 glycoprotein precursor (CD59) expression on trastuzumab-induced CDC in HER2-positive breast cancer cell lines was investigated. The CD55 and CD59-overexpressing and HER2-positive cell lines SK-BR-3 and BT474 were selected for subsequent experiments. Blocking CD55 and CD59 function using targeting monoclonal antibodies significantly enhanced the cell lysis of SK-BR-3 and BT474 cells following treatment with trastuzumab. In addition, following treatment with 0.1 U/ml phosphatidylinositol-specific phospholipase C (PI-PLC) for 1 h, CD55 and CD59 surface expression was significantly decreased, and the cell lysis rate was further enhanced. Treatment of SK-BR-3 cells with short hairpin RNA (shRNA) targeting CD55 and CD59 downregulated CD55 and CD59 expression at the mRNA and protein levels, and resulted in significantly enhanced trastuzumab-induced CDC-dependent lysis. The data from the present study suggested that CD55 and CD59 serve roles in blocking trastuzumab-induced CDC, therefore strategies targeting CD55 and CD59 may overcome breast cancer cell resistance to trastuzumab. The results from the present study may provide a basis for developing suitable, personalized treatment strategies to improve the clinical efficacy of trastuzumab for patients with HER2-positive breast cancer.