Cargando…

Antimicrobial Peptides as Anti-Infectives against Staphylococcus epidermidis

Staphylococcus epidermidis has emerged as the main causative agent for graft-related and nosocomial infections. Rampant use of antibiotics and biofilm formed by the organism results in poor penetration of the drug and further aggravates the antibiotic resistance, emphasizing an urgent need to explor...

Descripción completa

Detalles Bibliográficos
Autores principales: Agarwal, Sangya, Sharma, Garima, Dang, Shweta, Gupta, Sanjay, Gabrani, Reema
Formato: Online Artículo Texto
Lenguaje:English
Publicado: S. Karger AG 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588407/
https://www.ncbi.nlm.nih.gov/pubmed/26684017
http://dx.doi.org/10.1159/000443479
Descripción
Sumario:Staphylococcus epidermidis has emerged as the main causative agent for graft-related and nosocomial infections. Rampant use of antibiotics and biofilm formed by the organism results in poor penetration of the drug and further aggravates the antibiotic resistance, emphasizing an urgent need to explore alternative treatment modalities. Antimicrobial peptides (AMPs), produced as effector molecules of the innate immunity of living organisms, have therapeutic potential that can be used to inhibit the growth of microbes. In addition, the susceptibility of a microbe to become resistant to an AMP is relatively low. The AMPs are amphipathic peptides of 12-100 residues, which have broad-spectrum activity against microbes. There are scattered reports of AMPs listed against S. epidermidis and there is an urgent need to systematically study the AMPs. Various natural AMPs as well as synthetic peptides have been investigated against S. epidermidis. These peptides have been shown to inhibit both planktonic culture and S. epidermidis biofilm effectively. The multiple modes of action in killing the organism minimize the chances for the development of resistance. This review focused on various natural and synthetic peptides that demonstrate activity against S. epidermidis.