Cargando…
Multiple imputation for handling missing outcome data when estimating the relative risk
BACKGROUND: Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate norm...
Autores principales: | Sullivan, Thomas R., Lee, Katherine J., Ryan, Philip, Salter, Amy B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588607/ https://www.ncbi.nlm.nih.gov/pubmed/28877666 http://dx.doi.org/10.1186/s12874-017-0414-5 |
Ejemplares similares
-
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016) -
The Use of Multiple Imputation to Handle Missing Data in Secondary Datasets: Suggested Approaches when Missing Data Results from the Survey Structure
por: Jo, Soojung
Publicado: (2022) -
When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts
por: Jakobsen, Janus Christian, et al.
Publicado: (2017) -
Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework
por: Voillet, Valentin, et al.
Publicado: (2016) -
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023)