Cargando…

DlgR2 knockdown boosts dendritic cell activity and inhibits hepatocellular carcinoma tumor in-situ growth

Tumor-specific hepatic stellate cells (tHSCs) positively participate in human hepatocellular carcinoma (HCC) tumorigenesis and progression. Our previous studies have shown that tHSCs co-culture with dendritic cells (DCs) induced DIgR2 (dendritic cell-derived immunoglobulin receptor 2) expression. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zhen, Xia, Yun-Hong, Zhao, Min, Zhang, Bing, Dai, Wen-Ting, Ding, Lu, Hu, Li-Xia, Bi, Jin-Ling, Jiang, Guo-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589636/
https://www.ncbi.nlm.nih.gov/pubmed/28903397
http://dx.doi.org/10.18632/oncotarget.18990
Descripción
Sumario:Tumor-specific hepatic stellate cells (tHSCs) positively participate in human hepatocellular carcinoma (HCC) tumorigenesis and progression. Our previous studies have shown that tHSCs co-culture with dendritic cells (DCs) induced DIgR2 (dendritic cell-derived immunoglobulin receptor 2) expression. The latter is a member of IgSF inhibitory receptor suppressing DCs-initiated antigen-specific T-cell responses. In the current study, we show that hepatic artery injection of DlgR2 siRNA significantly inhibited in-situ HCC xenograft growth in rat livers. Further, 5-FU-medied inhibition of in-situ HCC growth was dramatically sensitized with DlgR2 silence. DlgR2 siRNA injection indeed downregulated DlgR2 in ex-vivo cultured tumor-derived DCs (tDCs). More importantly, tDCs activity was boosted following DlgR2 siRNA. These cells presented with upregulated CD80, CD86 and MHC-II. Production of interleukin-12 and tumor necrosis factor-α was also increased in the DlgR2-silenced tDCs. We propose that DlgR2 knockdown likely boosts the activity of tumor-associated DCs, and inhibits growth of in-situ HCC xenografts.