Cargando…
Extensions of interpolation between the arithmetic-geometric mean inequality for matrices
In this paper, we present some extensions of interpolation between the arithmetic-geometric means inequality. Among other inequalities, it is shown that if A, B, X are [Formula: see text] matrices, then [Formula: see text] where [Formula: see text] , [Formula: see text] , [Formula: see text] , [Form...
Autores principales: | Bakherad, Mojtaba, Lashkaripour, Rahmatollah, Hajmohamadi, Monire |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589830/ https://www.ncbi.nlm.nih.gov/pubmed/28943739 http://dx.doi.org/10.1186/s13660-017-1485-x |
Ejemplares similares
-
Reverses of Ando’s and Hölder–McCarty’s inequalities
por: Hajmohamadi, Monire, et al.
Publicado: (2018) -
Weighted arithmetic–geometric operator mean inequalities
por: Xue, Jianming
Publicado: (2018) -
A generalization and an application of the arithmetic–geometric mean inequality for the Frobenius norm
por: Wu, Xuesha
Publicado: (2018) -
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters
por: Qian, Wei-Mao, et al.
Publicado: (2017) -
Optimal inequalities for bounding Toader mean by arithmetic and quadratic means
por: Zhao, Tie-Hong, et al.
Publicado: (2017)