Cargando…

Role of miR-128 in hypertension-induced myocardial injury

The present study aimed to investigate the role and mechanism of micro RNA (miR)-128 in hypertension-induced myocardial injury. The peripheral blood of patients with hypertension was collected and the expression of miR-128 was detected using fluorescence reverse transcription-quantitative polymerase...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Jie, Liu, Hongyan, Huan, Lei, Song, Suping, Han, Liying, Ren, Faxin, Zhang, Zengtang, Zang, Zhiqiang, Zhang, Junye, Wang, Shu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590046/
https://www.ncbi.nlm.nih.gov/pubmed/28928797
http://dx.doi.org/10.3892/etm.2017.4886
Descripción
Sumario:The present study aimed to investigate the role and mechanism of micro RNA (miR)-128 in hypertension-induced myocardial injury. The peripheral blood of patients with hypertension was collected and the expression of miR-128 was detected using fluorescence reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Primary myocardial cells isolated from rat in vitro were cultured under conditions of hypoxia and glucose deprivation, and miR-128 expression was measured by RT-qPCR. The expression of c-Met protein was measured using western blot analysis and the apoptosis of transfected cells was measured by flow cytometry in rat myocardial cells following transfection with miR-128 mimics or c-Met siRNA. A luciferase assay was applied to assess the binding of miR-128 to c-Met mRNA. miR-128 expression was significantly higher in hypertension patients compared with controls (P<0.05). miR-128 expression was higher in patients with stage III/IV hypertension compared with patients with stage II hypertension. Similarly, miR-128 expression in primary cardiomyocytes cultured under deprivation of oxygen and glucose increased with the culture time and reached a peak at 12 h. c-Met expression decreased significantly (P<0.05) and the ratio of apoptotic cells increased significantly (P<0.05), following transfection of miR-128 mimics. The number of apoptotic cells also increased when c-Met expression was knocked down by siRNA. The dual luciferase assay indicated that fluorescence intensity decreased significantly in miR-128 mimics and wild type c-Met group (P<0.05), indicating that miR-128 can directly target c-Met. Therefore, the results of the current study suggest that miR-128 may promote myocardial cell injury by regulating c-Met expression.