Cargando…
More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge
BACKGROUND: Monitoring of fur-bearing species populations is relatively rare due to their low densities. In addition to catch data, trappers’ experience provides information on the ecology and status of the harvested species. Fisher (Pekania pennanti) and American marten (Martes americana) are muste...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590137/ https://www.ncbi.nlm.nih.gov/pubmed/28882186 http://dx.doi.org/10.1186/s13002-017-0180-9 |
_version_ | 1783262475477581824 |
---|---|
author | Suffice, Pauline Asselin, Hugo Imbeau, Louis Cheveau, Marianne Drapeau, Pierre |
author_facet | Suffice, Pauline Asselin, Hugo Imbeau, Louis Cheveau, Marianne Drapeau, Pierre |
author_sort | Suffice, Pauline |
collection | PubMed |
description | BACKGROUND: Monitoring of fur-bearing species populations is relatively rare due to their low densities. In addition to catch data, trappers’ experience provides information on the ecology and status of the harvested species. Fisher (Pekania pennanti) and American marten (Martes americana) are mustelids that are sensitive to forest management and therefore considered to be ecological indicators of forest health. Fisher populations have increased in eastern North America since the early 2000s and this could have resulted in a northeastern extension of the species’ range and increased overlap with marten’s range. Moreover, habitats of both species are subject to natural and anthropogenic disturbances. The objective of this study was to document the knowledge held by local trappers in the northern area of sympatry between fisher and marten to identify factors that could explain variation in populations of the two species and interactions between them. METHOD: Forty-one semi-directed interviews with Indigenous and non-Indigenous trappers in the Abitibi-Témiscamingue region of western Quebec (Canada), at the northern limit of the overlapping ranges of the two mustelid species. RESULTS: Trappers highlighted the lack of exclusivity of marten and fisher to coniferous forests, although marten is more closely associated with them than is fisher. Fisher apparently also takes advantage of open environments, including agroforestry systems. Moreover, climate change increases the frequency of freeze-thaw events that cause the formation of an ice crust on the snow surface, which favors fisher movements. CONCLUSION: The fisher was identified as a competitor and even a predator of the marten. Furthermore, the fisher is less affected than the marten by forest management, and it also seems to benefit from climate change to a greater extent. |
format | Online Article Text |
id | pubmed-5590137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55901372017-09-14 More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge Suffice, Pauline Asselin, Hugo Imbeau, Louis Cheveau, Marianne Drapeau, Pierre J Ethnobiol Ethnomed Research BACKGROUND: Monitoring of fur-bearing species populations is relatively rare due to their low densities. In addition to catch data, trappers’ experience provides information on the ecology and status of the harvested species. Fisher (Pekania pennanti) and American marten (Martes americana) are mustelids that are sensitive to forest management and therefore considered to be ecological indicators of forest health. Fisher populations have increased in eastern North America since the early 2000s and this could have resulted in a northeastern extension of the species’ range and increased overlap with marten’s range. Moreover, habitats of both species are subject to natural and anthropogenic disturbances. The objective of this study was to document the knowledge held by local trappers in the northern area of sympatry between fisher and marten to identify factors that could explain variation in populations of the two species and interactions between them. METHOD: Forty-one semi-directed interviews with Indigenous and non-Indigenous trappers in the Abitibi-Témiscamingue region of western Quebec (Canada), at the northern limit of the overlapping ranges of the two mustelid species. RESULTS: Trappers highlighted the lack of exclusivity of marten and fisher to coniferous forests, although marten is more closely associated with them than is fisher. Fisher apparently also takes advantage of open environments, including agroforestry systems. Moreover, climate change increases the frequency of freeze-thaw events that cause the formation of an ice crust on the snow surface, which favors fisher movements. CONCLUSION: The fisher was identified as a competitor and even a predator of the marten. Furthermore, the fisher is less affected than the marten by forest management, and it also seems to benefit from climate change to a greater extent. BioMed Central 2017-09-07 /pmc/articles/PMC5590137/ /pubmed/28882186 http://dx.doi.org/10.1186/s13002-017-0180-9 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Suffice, Pauline Asselin, Hugo Imbeau, Louis Cheveau, Marianne Drapeau, Pierre More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge |
title | More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge |
title_full | More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge |
title_fullStr | More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge |
title_full_unstemmed | More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge |
title_short | More fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge |
title_sort | more fishers and fewer martens due to cumulative effects of forest management and climate change as evidenced from local knowledge |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590137/ https://www.ncbi.nlm.nih.gov/pubmed/28882186 http://dx.doi.org/10.1186/s13002-017-0180-9 |
work_keys_str_mv | AT sufficepauline morefishersandfewermartensduetocumulativeeffectsofforestmanagementandclimatechangeasevidencedfromlocalknowledge AT asselinhugo morefishersandfewermartensduetocumulativeeffectsofforestmanagementandclimatechangeasevidencedfromlocalknowledge AT imbeaulouis morefishersandfewermartensduetocumulativeeffectsofforestmanagementandclimatechangeasevidencedfromlocalknowledge AT cheveaumarianne morefishersandfewermartensduetocumulativeeffectsofforestmanagementandclimatechangeasevidencedfromlocalknowledge AT drapeaupierre morefishersandfewermartensduetocumulativeeffectsofforestmanagementandclimatechangeasevidencedfromlocalknowledge |