Cargando…

Meta-analyses of the proportion of Japanese encephalitis virus infection in vectors and vertebrate hosts

BACKGROUND: Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardei...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Ana R.S., Cohnstaedt, Lee W., Strathe, Erin, Hernández, Luciana Etcheverry, McVey, D. Scott, Piaggio, José, Cernicchiaro, Natalia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590142/
https://www.ncbi.nlm.nih.gov/pubmed/28882172
http://dx.doi.org/10.1186/s13071-017-2354-7
Descripción
Sumario:BACKGROUND: Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses. METHODS: Data gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool. RESULTS: Mosquito species, diagnostic method, country, and capture method represented important sources of heterogeneity associated with the proportion of JEV infection; host species and region were considered sources of heterogeneity associated with the proportion of JEV infection in hosts; and diagnostic and mosquito capture methods were deemed important contributors of heterogeneity for the MIR outcome. CONCLUSIONS: Our findings provide reference pooled summary estimates of vector competence for JEV for some mosquito species, as well as of sources of variability for these outcomes. Moreover, this work provides useful guidelines when interpreting vector and host infection proportions or prevalence from observational studies, and contributes to further our understanding of vector and vertebrate host competence for JEV, elucidating information on the relative importance of vectors and hosts on JEV introduction and transmission. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13071-017-2354-7) contains supplementary material, which is available to authorized users.