Cargando…
Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse
Sugarcane bagasse was torrefied to improve its quality in terms of properties prior to gasification. Torrefaction was undertaken at 300 °C in an inert atmosphere of N(2) at 10 °C·min(−1) heating rate. A residence time of 5 min allowed for rapid reaction of the material during torrefaction. Torrefied...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590427/ https://www.ncbi.nlm.nih.gov/pubmed/28952501 http://dx.doi.org/10.3390/bioengineering4010022 |
Sumario: | Sugarcane bagasse was torrefied to improve its quality in terms of properties prior to gasification. Torrefaction was undertaken at 300 °C in an inert atmosphere of N(2) at 10 °C·min(−1) heating rate. A residence time of 5 min allowed for rapid reaction of the material during torrefaction. Torrefied and untorrefied bagasse were characterized to compare their suitability as feedstocks for gasification. The results showed that torrefied bagasse had lower O–C and H–C atomic ratios of about 0.5 and 0.84 as compared to that of untorrefied bagasse with 0.82 and 1.55, respectively. A calorific value of about 20.29 MJ·kg(−1) was also measured for torrefied bagasse, which is around 13% higher than that for untorrefied bagasse with a value of ca. 17.9 MJ·kg(−1). This confirms the former as a much more suitable feedstock for gasification than the latter since efficiency of gasification is a function of feedstock calorific value. SEM results also revealed a fibrous structure and pith in the micrographs of both torrefied and untorrefied bagasse, indicating the carbonaceous nature of both materials, with torrefied bagasse exhibiting a more permeable structure with larger surface area, which are among the features that favour gasification. The gasification process of torrefied bagasse relied on computer simulation to establish the impact of torrefaction on gasification efficiency. Optimum efficiency was achieved with torrefied bagasse because of its slightly modified properties. Conversion efficiency of the gasification process of torrefied bagasse increased from 50% to approximately 60% after computer simulation, whereas that of untorrefied bagasse remained constant at 50%, even as the gasification time increased. |
---|