Cargando…
Power analysis for random‐effects meta‐analysis
One of the reasons for the popularity of meta‐analysis is the notion that these analyses will possess more power to detect effects than individual studies. This is inevitably the case under a fixed‐effect model. However, the inclusion of the between‐study variance in the random‐effects model, and th...
Autores principales: | Jackson, Dan, Turner, Rebecca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590730/ https://www.ncbi.nlm.nih.gov/pubmed/28378395 http://dx.doi.org/10.1002/jrsm.1240 |
Ejemplares similares
-
Two new methods to fit models for network meta-analysis with random inconsistency effects
por: Law, Martin, et al.
Publicado: (2016) -
Paule‐Mandel estimators for network meta‐analysis with random inconsistency effects
por: Jackson, Dan, et al.
Publicado: (2017) -
Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models
por: Jackson, Dan, et al.
Publicado: (2014) -
Approximate confidence intervals for moment‐based estimators of the between‐study variance in random effects meta‐analysis
por: Jackson, Dan, et al.
Publicado: (2015) -
A re-evaluation of the ‘quantile approximation method’ for random effects meta-analysis
por: Jackson, Dan, et al.
Publicado: (2009)