Cargando…
High-speed atomic force microscopy imaging of live mammalian cells
Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society of Japan (BSJ)
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590786/ https://www.ncbi.nlm.nih.gov/pubmed/28900590 http://dx.doi.org/10.2142/biophysico.14.0_127 |
_version_ | 1783262587361689600 |
---|---|
author | Shibata, Mikihiro Watanabe, Hiroki Uchihashi, Takayuki Ando, Toshio Yasuda, Ryohei |
author_facet | Shibata, Mikihiro Watanabe, Hiroki Uchihashi, Takayuki Ando, Toshio Yasuda, Ryohei |
author_sort | Shibata, Mikihiro |
collection | PubMed |
description | Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons. |
format | Online Article Text |
id | pubmed-5590786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Biophysical Society of Japan (BSJ) |
record_format | MEDLINE/PubMed |
spelling | pubmed-55907862017-09-12 High-speed atomic force microscopy imaging of live mammalian cells Shibata, Mikihiro Watanabe, Hiroki Uchihashi, Takayuki Ando, Toshio Yasuda, Ryohei Biophys Physicobiol Review Article Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons. The Biophysical Society of Japan (BSJ) 2017-08-23 /pmc/articles/PMC5590786/ /pubmed/28900590 http://dx.doi.org/10.2142/biophysico.14.0_127 Text en 2017 © The Biophysical Society of Japan |
spellingShingle | Review Article Shibata, Mikihiro Watanabe, Hiroki Uchihashi, Takayuki Ando, Toshio Yasuda, Ryohei High-speed atomic force microscopy imaging of live mammalian cells |
title | High-speed atomic force microscopy imaging of live mammalian cells |
title_full | High-speed atomic force microscopy imaging of live mammalian cells |
title_fullStr | High-speed atomic force microscopy imaging of live mammalian cells |
title_full_unstemmed | High-speed atomic force microscopy imaging of live mammalian cells |
title_short | High-speed atomic force microscopy imaging of live mammalian cells |
title_sort | high-speed atomic force microscopy imaging of live mammalian cells |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590786/ https://www.ncbi.nlm.nih.gov/pubmed/28900590 http://dx.doi.org/10.2142/biophysico.14.0_127 |
work_keys_str_mv | AT shibatamikihiro highspeedatomicforcemicroscopyimagingoflivemammaliancells AT watanabehiroki highspeedatomicforcemicroscopyimagingoflivemammaliancells AT uchihashitakayuki highspeedatomicforcemicroscopyimagingoflivemammaliancells AT andotoshio highspeedatomicforcemicroscopyimagingoflivemammaliancells AT yasudaryohei highspeedatomicforcemicroscopyimagingoflivemammaliancells |