Cargando…
Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have be...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590919/ https://www.ncbi.nlm.nih.gov/pubmed/28886112 http://dx.doi.org/10.1371/journal.pone.0184419 |
_version_ | 1783262613221670912 |
---|---|
author | Mathes, Robert W. Lall, Ramona Levin-Rector, Alison Sell, Jessica Paladini, Marc Konty, Kevin J. Olson, Don Weiss, Don |
author_facet | Mathes, Robert W. Lall, Ramona Levin-Rector, Alison Sell, Jessica Paladini, Marc Konty, Kevin J. Olson, Don Weiss, Don |
author_sort | Mathes, Robert W. |
collection | PubMed |
description | The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. |
format | Online Article Text |
id | pubmed-5590919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55909192017-09-15 Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system Mathes, Robert W. Lall, Ramona Levin-Rector, Alison Sell, Jessica Paladini, Marc Konty, Kevin J. Olson, Don Weiss, Don PLoS One Research Article The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. Public Library of Science 2017-09-08 /pmc/articles/PMC5590919/ /pubmed/28886112 http://dx.doi.org/10.1371/journal.pone.0184419 Text en © 2017 Mathes et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mathes, Robert W. Lall, Ramona Levin-Rector, Alison Sell, Jessica Paladini, Marc Konty, Kevin J. Olson, Don Weiss, Don Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system |
title | Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system |
title_full | Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system |
title_fullStr | Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system |
title_full_unstemmed | Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system |
title_short | Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system |
title_sort | evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590919/ https://www.ncbi.nlm.nih.gov/pubmed/28886112 http://dx.doi.org/10.1371/journal.pone.0184419 |
work_keys_str_mv | AT mathesrobertw evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem AT lallramona evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem AT levinrectoralison evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem AT selljessica evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem AT paladinimarc evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem AT kontykevinj evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem AT olsondon evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem AT weissdon evaluatingandimplementingtemporalspatialandspatiotemporalmethodsforoutbreakdetectioninalocalsyndromicsurveillancesystem |