Cargando…
Deep Neural Network Probabilistic Decoder for Stabilizer Codes
Neural networks can efficiently encode the probability distribution of errors in an error correcting code. Moreover, these distributions can be conditioned on the syndromes of the corresponding errors. This paves a path forward for a decoder that employs a neural network to calculate the conditional...
Autores principales: | Krastanov, Stefan, Jiang, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591216/ https://www.ncbi.nlm.nih.gov/pubmed/28887480 http://dx.doi.org/10.1038/s41598-017-11266-1 |
Ejemplares similares
-
Probabilistic Models with Deep Neural Networks
por: Masegosa, Andrés R., et al.
Publicado: (2021) -
Effective Connectivity for Decoding Electroencephalographic Motor Imagery Using a Probabilistic Neural Network
por: Awais, Muhammad Ahsan, et al.
Publicado: (2021) -
Deep Convolutional Neural Network for EEG-Based Motor Decoding
por: Zhang, Jing, et al.
Publicado: (2022) -
Deep learning with convolutional neural networks for EEG decoding and visualization
por: Schirrmeister, Robin Tibor, et al.
Publicado: (2017) -
Interval probabilistic neural network
por: Kowalski, Piotr A., et al.
Publicado: (2015)