Cargando…

On rational bounds for the gamma function

In the article, we prove that the double inequality [Formula: see text] holds for all [Formula: see text] , we present the best possible constants λ and μ such that [Formula: see text] for all [Formula: see text] , and we find the value of [Formula: see text] in the interval [Formula: see text] such...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhen-Hang, Qian, Wei-Mao, Chu, Yu-Ming, Zhang, Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591381/
https://www.ncbi.nlm.nih.gov/pubmed/28955149
http://dx.doi.org/10.1186/s13660-017-1484-y
_version_ 1783262703600533504
author Yang, Zhen-Hang
Qian, Wei-Mao
Chu, Yu-Ming
Zhang, Wen
author_facet Yang, Zhen-Hang
Qian, Wei-Mao
Chu, Yu-Ming
Zhang, Wen
author_sort Yang, Zhen-Hang
collection PubMed
description In the article, we prove that the double inequality [Formula: see text] holds for all [Formula: see text] , we present the best possible constants λ and μ such that [Formula: see text] for all [Formula: see text] , and we find the value of [Formula: see text] in the interval [Formula: see text] such that [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text] , where [Formula: see text] is the classical gamma function, [Formula: see text] is Euler-Mascheroni constant and [Formula: see text]  .
format Online
Article
Text
id pubmed-5591381
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-55913812017-09-25 On rational bounds for the gamma function Yang, Zhen-Hang Qian, Wei-Mao Chu, Yu-Ming Zhang, Wen J Inequal Appl Research In the article, we prove that the double inequality [Formula: see text] holds for all [Formula: see text] , we present the best possible constants λ and μ such that [Formula: see text] for all [Formula: see text] , and we find the value of [Formula: see text] in the interval [Formula: see text] such that [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text] , where [Formula: see text] is the classical gamma function, [Formula: see text] is Euler-Mascheroni constant and [Formula: see text]  . Springer International Publishing 2017-09-08 2017 /pmc/articles/PMC5591381/ /pubmed/28955149 http://dx.doi.org/10.1186/s13660-017-1484-y Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Yang, Zhen-Hang
Qian, Wei-Mao
Chu, Yu-Ming
Zhang, Wen
On rational bounds for the gamma function
title On rational bounds for the gamma function
title_full On rational bounds for the gamma function
title_fullStr On rational bounds for the gamma function
title_full_unstemmed On rational bounds for the gamma function
title_short On rational bounds for the gamma function
title_sort on rational bounds for the gamma function
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591381/
https://www.ncbi.nlm.nih.gov/pubmed/28955149
http://dx.doi.org/10.1186/s13660-017-1484-y
work_keys_str_mv AT yangzhenhang onrationalboundsforthegammafunction
AT qianweimao onrationalboundsforthegammafunction
AT chuyuming onrationalboundsforthegammafunction
AT zhangwen onrationalboundsforthegammafunction