Cargando…
Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant
BACKGROUND: Waste animal fat is a promising feedstock to replace vegetable oil that widely used in commercial biodiesel process, however the high content of free fatty acid in waste fat makes it unfeasible to be processed with commercial base-catalytic process. Enzymatic process is preferable to con...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591511/ https://www.ncbi.nlm.nih.gov/pubmed/28888230 http://dx.doi.org/10.1186/s12896-017-0390-1 |
_version_ | 1783262727856193536 |
---|---|
author | Pollardo, Aldricho Alpha Lee, Hong-shik Lee, Dohoon Kim, Sangyong Kim, Jaehoon |
author_facet | Pollardo, Aldricho Alpha Lee, Hong-shik Lee, Dohoon Kim, Sangyong Kim, Jaehoon |
author_sort | Pollardo, Aldricho Alpha |
collection | PubMed |
description | BACKGROUND: Waste animal fat is a promising feedstock to replace vegetable oil that widely used in commercial biodiesel process, however the high content of free fatty acid in waste fat makes it unfeasible to be processed with commercial base-catalytic process. Enzymatic process is preferable to convert waste fat into biodiesel since enzyme can catalyze both esterification of free fatty acid and transesterification of triglyceride. However, enzymatic reaction still has some drawbacks such as lower reaction rates than base-catalyzed transesterification and the limitation of reactant concentration due to the enzyme inhibition of methanol. Supercritical CO(2) is a promising reaction media for enzyme-catalyzed transesterification to overcome those drawbacks. RESULT: The transesterification of waste animal fat was carried out in supercritical CO(2) with varied concentration of feedstock and methanol in CO(2). The CO(2) to feedstock mass ratio of 10:1 showed the highest yield compared to other ratios, and the highest FAME yield obtained from waste animal fat was 78%. The methanol concentration effect was also observed with variation 12%, 14%, and 16% of methanol to feedstock ratio. The best yield was 87% obtained at the CO(2) to feedstock ratio of 10: 1 and at the methanol to feedstock ratio of 14% after 6 h of reaction. CONCLUSION: Enzymatic transesterification to produce biodiesel from waste animal fat in supercritical fluid media is a potential method for commercialization since it could enhance enzyme activity due to supercritical fluid properties to remove mass transfer limitation. The high yield of FAME when using high mass ratio of CO(2) to oil showed that supercritical CO(2) could increase the reaction and mass transfer rate while reducing methanol toxicity to enzyme activity. The increase of methanol concentration also increased the FAME yield because it might shift the reaction equilibrium to FAME production. This finding describes that the application of supercritical CO(2) in the enzymatic reaction enables the application of simple process such as a packed-bed reactor. |
format | Online Article Text |
id | pubmed-5591511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55915112017-09-13 Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant Pollardo, Aldricho Alpha Lee, Hong-shik Lee, Dohoon Kim, Sangyong Kim, Jaehoon BMC Biotechnol Research Article BACKGROUND: Waste animal fat is a promising feedstock to replace vegetable oil that widely used in commercial biodiesel process, however the high content of free fatty acid in waste fat makes it unfeasible to be processed with commercial base-catalytic process. Enzymatic process is preferable to convert waste fat into biodiesel since enzyme can catalyze both esterification of free fatty acid and transesterification of triglyceride. However, enzymatic reaction still has some drawbacks such as lower reaction rates than base-catalyzed transesterification and the limitation of reactant concentration due to the enzyme inhibition of methanol. Supercritical CO(2) is a promising reaction media for enzyme-catalyzed transesterification to overcome those drawbacks. RESULT: The transesterification of waste animal fat was carried out in supercritical CO(2) with varied concentration of feedstock and methanol in CO(2). The CO(2) to feedstock mass ratio of 10:1 showed the highest yield compared to other ratios, and the highest FAME yield obtained from waste animal fat was 78%. The methanol concentration effect was also observed with variation 12%, 14%, and 16% of methanol to feedstock ratio. The best yield was 87% obtained at the CO(2) to feedstock ratio of 10: 1 and at the methanol to feedstock ratio of 14% after 6 h of reaction. CONCLUSION: Enzymatic transesterification to produce biodiesel from waste animal fat in supercritical fluid media is a potential method for commercialization since it could enhance enzyme activity due to supercritical fluid properties to remove mass transfer limitation. The high yield of FAME when using high mass ratio of CO(2) to oil showed that supercritical CO(2) could increase the reaction and mass transfer rate while reducing methanol toxicity to enzyme activity. The increase of methanol concentration also increased the FAME yield because it might shift the reaction equilibrium to FAME production. This finding describes that the application of supercritical CO(2) in the enzymatic reaction enables the application of simple process such as a packed-bed reactor. BioMed Central 2017-09-09 /pmc/articles/PMC5591511/ /pubmed/28888230 http://dx.doi.org/10.1186/s12896-017-0390-1 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Pollardo, Aldricho Alpha Lee, Hong-shik Lee, Dohoon Kim, Sangyong Kim, Jaehoon Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant |
title | Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant |
title_full | Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant |
title_fullStr | Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant |
title_full_unstemmed | Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant |
title_short | Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant |
title_sort | effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized candida antarctica lipase b variant |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591511/ https://www.ncbi.nlm.nih.gov/pubmed/28888230 http://dx.doi.org/10.1186/s12896-017-0390-1 |
work_keys_str_mv | AT pollardoaldrichoalpha effectofsupercriticalcarbondioxideontheenzymaticproductionofbiodieselfromwasteanimalfatusingimmobilizedcandidaantarcticalipasebvariant AT leehongshik effectofsupercriticalcarbondioxideontheenzymaticproductionofbiodieselfromwasteanimalfatusingimmobilizedcandidaantarcticalipasebvariant AT leedohoon effectofsupercriticalcarbondioxideontheenzymaticproductionofbiodieselfromwasteanimalfatusingimmobilizedcandidaantarcticalipasebvariant AT kimsangyong effectofsupercriticalcarbondioxideontheenzymaticproductionofbiodieselfromwasteanimalfatusingimmobilizedcandidaantarcticalipasebvariant AT kimjaehoon effectofsupercriticalcarbondioxideontheenzymaticproductionofbiodieselfromwasteanimalfatusingimmobilizedcandidaantarcticalipasebvariant |