Cargando…
Hormonal Regulation in Shade Avoidance
At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm) to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity. These light signals trigger a spectrum of morphological changes manifested by growth of stem-like tissue (hypocotyl,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591575/ https://www.ncbi.nlm.nih.gov/pubmed/28928761 http://dx.doi.org/10.3389/fpls.2017.01527 |
_version_ | 1783262742755409920 |
---|---|
author | Yang, Chuanwei Li, Lin |
author_facet | Yang, Chuanwei Li, Lin |
author_sort | Yang, Chuanwei |
collection | PubMed |
description | At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm) to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity. These light signals trigger a spectrum of morphological changes manifested by growth of stem-like tissue (hypocotyl, petiole, etc.) instead of harvestable organs (leaves, fruits, seeds, etc.)—namely, shade avoidance syndrome (SAS). Common phenotypical changes related to SAS are changes in leaf hyponasty, an increase in hypocotyl and internode elongation and extended petioles. Prolonged shade exposure leads to early flowering, less branching, increased susceptibility to insect herbivory, and decreased seed yield. Thus, shade avoidance significantly impacts on agronomic traits. Many genetic and molecular studies have revealed that phytochromes, cryptochromes and UVR8 (UV-B photoreceptor protein) monitor the changes in light intensity under shade and regulate the stability or activity of phytochrome-interacting factors (PIFs). PIF-governed modulation of the expression of auxin biosynthesis, transporter and signaling genes is the major driver for shade-induced hypocotyl elongation. Besides auxin, gibberellins, brassinosteroids, and ethylene are also required for shade-induced hypocotyl or petiole elongation growth. In leaves, accumulated auxin stimulates cytokinin oxidase expression to break down cytokinins and inhibit leaf growth. In the young buds, shade light promotes the accumulation of abscisic acid to repress branching. Shade light also represses jasmonate- and salicylic acid-induced defense responses to balance resource allocation between growth and defense. Here we will summarize recent findings relating to such hormonal regulation in SAS in Arabidopsis thaliana, Brassica rapa, and certain crops. |
format | Online Article Text |
id | pubmed-5591575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55915752017-09-19 Hormonal Regulation in Shade Avoidance Yang, Chuanwei Li, Lin Front Plant Sci Plant Science At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm) to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity. These light signals trigger a spectrum of morphological changes manifested by growth of stem-like tissue (hypocotyl, petiole, etc.) instead of harvestable organs (leaves, fruits, seeds, etc.)—namely, shade avoidance syndrome (SAS). Common phenotypical changes related to SAS are changes in leaf hyponasty, an increase in hypocotyl and internode elongation and extended petioles. Prolonged shade exposure leads to early flowering, less branching, increased susceptibility to insect herbivory, and decreased seed yield. Thus, shade avoidance significantly impacts on agronomic traits. Many genetic and molecular studies have revealed that phytochromes, cryptochromes and UVR8 (UV-B photoreceptor protein) monitor the changes in light intensity under shade and regulate the stability or activity of phytochrome-interacting factors (PIFs). PIF-governed modulation of the expression of auxin biosynthesis, transporter and signaling genes is the major driver for shade-induced hypocotyl elongation. Besides auxin, gibberellins, brassinosteroids, and ethylene are also required for shade-induced hypocotyl or petiole elongation growth. In leaves, accumulated auxin stimulates cytokinin oxidase expression to break down cytokinins and inhibit leaf growth. In the young buds, shade light promotes the accumulation of abscisic acid to repress branching. Shade light also represses jasmonate- and salicylic acid-induced defense responses to balance resource allocation between growth and defense. Here we will summarize recent findings relating to such hormonal regulation in SAS in Arabidopsis thaliana, Brassica rapa, and certain crops. Frontiers Media S.A. 2017-09-04 /pmc/articles/PMC5591575/ /pubmed/28928761 http://dx.doi.org/10.3389/fpls.2017.01527 Text en Copyright © 2017 Yang and Li. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Yang, Chuanwei Li, Lin Hormonal Regulation in Shade Avoidance |
title | Hormonal Regulation in Shade Avoidance |
title_full | Hormonal Regulation in Shade Avoidance |
title_fullStr | Hormonal Regulation in Shade Avoidance |
title_full_unstemmed | Hormonal Regulation in Shade Avoidance |
title_short | Hormonal Regulation in Shade Avoidance |
title_sort | hormonal regulation in shade avoidance |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591575/ https://www.ncbi.nlm.nih.gov/pubmed/28928761 http://dx.doi.org/10.3389/fpls.2017.01527 |
work_keys_str_mv | AT yangchuanwei hormonalregulationinshadeavoidance AT lilin hormonalregulationinshadeavoidance |