Cargando…

Rearrangeable and exchangeable optical module with system-on-chip for wearable functional near-infrared spectroscopy system

We developed a system-on-chip (SoC)-incorporated light-emitting diode (LED) and avalanche photodiode (APD) modules to improve the usability and flexibility of a fiberless wearable functional near-infrared spectroscopy (fNIRS) system. The SoC has a microprocessing unit and programmable circuits. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Funane, Tsukasa, Numata, Takashi, Sato, Hiroki, Hiraizumi, Shinsuke, Hasegawa, Yuichi, Kuwabara, Hidenobu, Hasegawa, Kiyoshi, Kiguchi, Masashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591581/
https://www.ncbi.nlm.nih.gov/pubmed/28924567
http://dx.doi.org/10.1117/1.NPh.5.1.011007
Descripción
Sumario:We developed a system-on-chip (SoC)-incorporated light-emitting diode (LED) and avalanche photodiode (APD) modules to improve the usability and flexibility of a fiberless wearable functional near-infrared spectroscopy (fNIRS) system. The SoC has a microprocessing unit and programmable circuits. The time division method and the lock-in method were used for separately detecting signals from different positions and signals of different wavelengths, respectively. Each module autonomously works for this time-divided-lock-in measurement with a high sensitivity for haired regions. By supplying [Formula: see text] of power and base and data clocks, the LED module emits both 730- and 855-nm wavelengths of light, amplitudes of which are modulated in each lock-in frequency generated from the base clock, and the APD module provides the lock-in detected signals synchronizing with the data clock. The SoC provided many functions, including automatic-power-control of the LED, automatic judgment of detected power level, and automatic-gain-control of the programmable gain amplifier. The number and the arrangement of modules can be adaptively changed by connecting this exchangeable modules in a daisy chain and setting the parameters dependent on the probing position. Therefore, users can configure a variety of arrangements (single- or multidistance combinations) of them with this module-based system.