Cargando…
Changes in Electroencephalography Complexity using a Brain Computer Interface-Motor Observation Training in Chronic Stroke Patients: A Fuzzy Approximate Entropy Analysis
Entropy-based algorithms have been suggested as robust estimators of electroencephalography (EEG) predictability or regularity. This study aimed to examine possible disturbances in EEG complexity as a means to elucidate the pathophysiological mechanisms in chronic stroke, before and after a brain co...
Autores principales: | Sun, Rui, Wong, Wan-wa, Wang, Jing, Tong, Raymond Kai-yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591875/ https://www.ncbi.nlm.nih.gov/pubmed/28928649 http://dx.doi.org/10.3389/fnhum.2017.00444 |
Ejemplares similares
-
Functional brain networks assessed with surface electroencephalography for predicting motor recovery in a neural guided intervention for chronic stroke
por: Sun, Rui, et al.
Publicado: (2021) -
Stroke-Related Changes in the Complexity of Muscle Activation during Obstacle Crossing Using Fuzzy Approximate Entropy Analysis
por: Chen, Ying, et al.
Publicado: (2018) -
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021) -
Synchronization lag in post stroke: relation to motor function and structural connectivity
por: Wang, Xin, et al.
Publicado: (2019) -
Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision
por: Girault, Jean-Marc, et al.
Publicado: (2018)