Cargando…
Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction
The reconstruction of dynamic magnetic resonance imaging (dMRI) from partially sampled k-space data has to deal with a trade-off between the spatial resolution and temporal resolution. In this paper, a low-rank and sparse decomposition model is introduced to resolve this issue, which is formulated a...
Autores principales: | Chen, Junbo, Liu, Shouyin, Huang, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591906/ https://www.ncbi.nlm.nih.gov/pubmed/29093806 http://dx.doi.org/10.1155/2017/9856058 |
Ejemplares similares
-
Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
por: Xiu, Xianchao, et al.
Publicado: (2015) -
Low-Rank Plus Sparse Decomposition of fMRI Data With Application to Alzheimer's Disease
por: Tu, Wei, et al.
Publicado: (2022) -
Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging
por: Yu, Xingjian, et al.
Publicado: (2015) -
Low-Rank and Sparse Matrix Decomposition for Genetic
Interaction Data
por: Wang, Yishu, et al.
Publicado: (2015) -
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
por: Gou, Shuiping, et al.
Publicado: (2013)