Cargando…

Segmentation of Left and Right Ventricles in Cardiac MRI Using Active Contours

Segmentation of left and right ventricles plays a crucial role in quantitatively analyzing the global and regional information in the cardiac magnetic resonance imaging (MRI). In MRI, the intensity inhomogeneity and weak or blurred object boundaries are the problems, which makes it difficult for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Soomro, Shafiullah, Akram, Farhan, Munir, Asad, Lee, Chang Ha, Choi, Kwang Nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591936/
https://www.ncbi.nlm.nih.gov/pubmed/28928796
http://dx.doi.org/10.1155/2017/8350680
Descripción
Sumario:Segmentation of left and right ventricles plays a crucial role in quantitatively analyzing the global and regional information in the cardiac magnetic resonance imaging (MRI). In MRI, the intensity inhomogeneity and weak or blurred object boundaries are the problems, which makes it difficult for the intensity-based segmentation methods to properly delineate the regions of interests (ROI). In this paper, a hybrid signed pressure force function (SPF) is proposed, which yields both local and global image fitted differences in an additive fashion. A characteristic term is also introduced in the SPF function to restrict the contour within the ROI. The overlapping dice index and Hausdorff-Distance metrics have been used over cardiac datasets for quantitative validation. Using 2009 LV MICCAI validation dataset, the proposed method yields DSC values of 0.95 and 0.97 for endocardial and epicardial contours, respectively. Using 2012 RV MICCAI dataset, for the endocardial region, the proposed method yields DSC values of 0.97 and 0.90 and HD values of 8.51 and 7.67 for ED and ES, respectively. For the epicardial region, it yields DSC values of 0.92 and 0.91 and HD values of 6.47 and 9.34 for ED and ES, respectively. Results show its robustness in the segmentation application of the cardiac MRI.