Cargando…
Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks
Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the traini...
Autores principales: | Mostafa, Hesham, Pedroni, Bruno, Sheik, Sadique, Cauwenberghs, Gert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592276/ https://www.ncbi.nlm.nih.gov/pubmed/28932180 http://dx.doi.org/10.3389/fnins.2017.00496 |
Ejemplares similares
-
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
por: Pedroni, Bruno U., et al.
Publicado: (2019) -
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023) -
Deep Supervised Learning Using Local Errors
por: Mostafa, Hesham, et al.
Publicado: (2018) -
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
por: Detorakis, Georgios, et al.
Publicado: (2018) -
Trainable hardware for dynamical computing using error backpropagation through physical media
por: Hermans, Michiel, et al.
Publicado: (2015)