Cargando…
NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells
Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by comp...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592653/ https://www.ncbi.nlm.nih.gov/pubmed/28904818 http://dx.doi.org/10.1038/cddiscovery.2017.59 |
_version_ | 1783262925894451200 |
---|---|
author | Zhu, Xiaolan Huang, Li Gong, Jie Shi, Chun Wang, Zhiming Ye, Bingkun Xuan, Aiguo He, Xiaosong Long, Dahong Zhu, Xiao Ma, Ningfang Leng, Shuilong |
author_facet | Zhu, Xiaolan Huang, Li Gong, Jie Shi, Chun Wang, Zhiming Ye, Bingkun Xuan, Aiguo He, Xiaosong Long, Dahong Zhu, Xiao Ma, Ningfang Leng, Shuilong |
author_sort | Zhu, Xiaolan |
collection | PubMed |
description | Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by compounds such as brefeldin A (BFA), tunicamycin (TM), and thapsigargin (TG) leads to the induction of the unfolded protein response (UPR) in cervical cancer cell lines, which is characterized by elevated levels of inositol-requiring kinase 1α, glucose-regulated protein-78, and C/EBP homologous protein, and swelling of the ER observed by transmission electron microscope (TEM). We found that BFA significantly increased autophagy in tumor cells and induced TC-1 tumor cell death in a dose-dependent manner. BFA increased punctate staining of LC3 and the number of autophagosomes observed by TEM in TC-1 and HeLa cells. The autophagic flux was also assessed. Bafilomycin, which blocked degradation of LC3 in lysosomes, caused both LC3I and LC3II accumulation. BFA initiated apoptosis of TC-1 tumor cells through activation of the caspase-12/caspase-3 pathway. At the same time, BFA enhanced the phosphorylation of IκBα protein and translocation into the nucleus of NF-κB p65. Quinazolinediamine, an NF-κB inhibitor, attenuated both autophagy and apoptosis induced by BFA; meanwhile, it partly enhances survival of cervical cancer cells following BFA treatment. In conclusion, our results indicate that the cross-talk between ER stress, autophagy, apoptosis, and the NF-κB pathways controls the fate of cervical cancer cells. Careful evaluation should be given to the addition of an NF-κB pathway inhibitor to treat cervical cancer in combination with drugs that induce ER stress-mediated cell death. |
format | Online Article Text |
id | pubmed-5592653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-55926532017-09-13 NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells Zhu, Xiaolan Huang, Li Gong, Jie Shi, Chun Wang, Zhiming Ye, Bingkun Xuan, Aiguo He, Xiaosong Long, Dahong Zhu, Xiao Ma, Ningfang Leng, Shuilong Cell Death Discov Article Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by compounds such as brefeldin A (BFA), tunicamycin (TM), and thapsigargin (TG) leads to the induction of the unfolded protein response (UPR) in cervical cancer cell lines, which is characterized by elevated levels of inositol-requiring kinase 1α, glucose-regulated protein-78, and C/EBP homologous protein, and swelling of the ER observed by transmission electron microscope (TEM). We found that BFA significantly increased autophagy in tumor cells and induced TC-1 tumor cell death in a dose-dependent manner. BFA increased punctate staining of LC3 and the number of autophagosomes observed by TEM in TC-1 and HeLa cells. The autophagic flux was also assessed. Bafilomycin, which blocked degradation of LC3 in lysosomes, caused both LC3I and LC3II accumulation. BFA initiated apoptosis of TC-1 tumor cells through activation of the caspase-12/caspase-3 pathway. At the same time, BFA enhanced the phosphorylation of IκBα protein and translocation into the nucleus of NF-κB p65. Quinazolinediamine, an NF-κB inhibitor, attenuated both autophagy and apoptosis induced by BFA; meanwhile, it partly enhances survival of cervical cancer cells following BFA treatment. In conclusion, our results indicate that the cross-talk between ER stress, autophagy, apoptosis, and the NF-κB pathways controls the fate of cervical cancer cells. Careful evaluation should be given to the addition of an NF-κB pathway inhibitor to treat cervical cancer in combination with drugs that induce ER stress-mediated cell death. Nature Publishing Group 2017-09-11 /pmc/articles/PMC5592653/ /pubmed/28904818 http://dx.doi.org/10.1038/cddiscovery.2017.59 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Zhu, Xiaolan Huang, Li Gong, Jie Shi, Chun Wang, Zhiming Ye, Bingkun Xuan, Aiguo He, Xiaosong Long, Dahong Zhu, Xiao Ma, Ningfang Leng, Shuilong NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells |
title | NF-κB pathway link with ER stress-induced autophagy and apoptosis in
cervical tumor cells |
title_full | NF-κB pathway link with ER stress-induced autophagy and apoptosis in
cervical tumor cells |
title_fullStr | NF-κB pathway link with ER stress-induced autophagy and apoptosis in
cervical tumor cells |
title_full_unstemmed | NF-κB pathway link with ER stress-induced autophagy and apoptosis in
cervical tumor cells |
title_short | NF-κB pathway link with ER stress-induced autophagy and apoptosis in
cervical tumor cells |
title_sort | nf-κb pathway link with er stress-induced autophagy and apoptosis in
cervical tumor cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592653/ https://www.ncbi.nlm.nih.gov/pubmed/28904818 http://dx.doi.org/10.1038/cddiscovery.2017.59 |
work_keys_str_mv | AT zhuxiaolan nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT huangli nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT gongjie nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT shichun nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT wangzhiming nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT yebingkun nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT xuanaiguo nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT hexiaosong nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT longdahong nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT zhuxiao nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT maningfang nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells AT lengshuilong nfkbpathwaylinkwitherstressinducedautophagyandapoptosisincervicaltumorcells |