Cargando…

Functional roles of C/EBPα and SUMO-modification in lung development

CCAAT enhancer binding protein alpha (C/EBPα) is a transcription factor regulating the core aspects of cell growth and differentiation. The present study investigated the level and functional role of C/EBPα during the development of the rat lung. C/EBPα protein exhibits a dynamic expression pattern....

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yuan-Dong, Liu, Jiang-Yan, Lu, Yan-Min, Zhu, Hai-Tao, Tang, Wei, Wang, Qiu-Xia, Lu, Hong-Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593452/
https://www.ncbi.nlm.nih.gov/pubmed/28902364
http://dx.doi.org/10.3892/ijmm.2017.3111
Descripción
Sumario:CCAAT enhancer binding protein alpha (C/EBPα) is a transcription factor regulating the core aspects of cell growth and differentiation. The present study investigated the level and functional role of C/EBPα during the development of the rat lung. C/EBPα protein exhibits a dynamic expression pattern. The correlation between the expression of C/EBPα protein and the content of glycogen during lung maturation was analyzed to understand the function of C/EBPα in lung differentiation. The high expression of C/EBPα coincides with the reduction of glycogen in the fetal lung. In addition, the authors identified that changes in the level of C/EBPα are associated with the secretion of pulmonary surfactant. C/EBPα is modified by small ubiquitin-related modifier (SUMO) post-translationally. The results of double immunofluorescence staining and immunoprecipitation demonstrated that SUMO-modified C/EBPα was present in the lung. The sumoylated C/EBPα gradually decreased during lung differentiation and was negatively correlated with pulmonary surfactant secretion, thereby suggesting that the SUMO modification may participate in C/EBPα-mediated lung growth and differentiation. These results indicated that C/EBPα played a role in lung development and provided the insight into the mechanism underlying SUMO-modification.