Cargando…
A Chinese Pane-Like 2D Metal-Organic Framework Showing Magnetic Relaxation and Luminescence Dual-Functions
The discovery of graphene kicked off the curtain of atom-type two-dimensional (2D) materials. Layered metal-organic frameworks (MOFs) as parallel molecule-based 2D materials are more designable and more diverse, and magnetism may be induced by their metal ion nodes. However, the multifunctional 2D p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594028/ https://www.ncbi.nlm.nih.gov/pubmed/28894130 http://dx.doi.org/10.1038/s41598-017-11006-5 |
Sumario: | The discovery of graphene kicked off the curtain of atom-type two-dimensional (2D) materials. Layered metal-organic frameworks (MOFs) as parallel molecule-based 2D materials are more designable and more diverse, and magnetism may be induced by their metal ion nodes. However, the multifunctional 2D plane-like MOFs are very difficult to obtain. Here we describe a Chinese pane-like 2D MOF constructed from the Ln(3+) cation and the nanoscale luminescent tritopic ligand tris(4′-carboxybiphenyl)-amine, responding to the slow magnetic relaxation and luminescence properties, respectively. Notably, the Dy-Dy distances separated by the tritopic ligand are up to 2 nm. Such a 2D molecular material is expected to have potential applications in optoelectronics and multimodal sensing. |
---|