Cargando…

IHC-based subcellular quantification provides new insights into prognostic relevance of FLIP and procaspase-8 in non-small-cell lung cancer

In this study, we developed an image analysis algorithm for quantification of two potential apoptotic biomarkers in non-small-cell lung cancer (NSCLC): FLIP and procaspase-8. Immunohistochemical expression of FLIP and procaspase-8 in 184 NSCLC tumors were assessed. Individual patient cores were segm...

Descripción completa

Detalles Bibliográficos
Autores principales: Hutchinson, Ryan A, Coleman, Helen G, Gately, Kathy, Young, Vincent, Nicholson, Siobhan, Cummins, Robert, Kay, Elaine, Hynes, Sean O, Dunne, Philip D, Senevirathne, Seedevi, Hamilton, Peter W, McArt, Darragh G, Longley, Daniel B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594421/
https://www.ncbi.nlm.nih.gov/pubmed/28904817
http://dx.doi.org/10.1038/cddiscovery.2017.50
Descripción
Sumario:In this study, we developed an image analysis algorithm for quantification of two potential apoptotic biomarkers in non-small-cell lung cancer (NSCLC): FLIP and procaspase-8. Immunohistochemical expression of FLIP and procaspase-8 in 184 NSCLC tumors were assessed. Individual patient cores were segmented and classified as tumor and stroma using the Definiens Tissue Studio. Subsequently, chromogenic expression of each biomarker was measured separately in the nucleus and cytoplasm and reported as a quantitative histological score. The software package pROC was applied to define biomarker thresholds. Cox proportional hazards analysis was applied to generate hazard ratios (HRs) and associated 95% CI for survival. High cytoplasmic expression of tumoral (but not stromal) FLIP was associated with a 2.5-fold increased risk of death in lung adenocarcinoma patients, even when adjusted for known confounders (HR 2.47, 95% CI 1.14–5.35). Neither nuclear nor cytoplasmic tumoral procaspase-8 expression was associated with overall survival in lung adenocarcinoma patients; however, there was a significant trend (P for trend=0.03) for patients with adenocarcinomas with both high cytoplasmic FLIP and high cytoplasmic procaspase-8 to have a multiplicative increased risk of death. Notably, high stromal nuclear procaspase-8 expression was associated with a reduced risk of death in lung adenocarcinoma patients (adjusted HR 0.31, 95% CI 0.15–0.66). On further examination, the cells with high nuclear procaspase-8 were found to be of lymphoid origin, suggesting that the better prognosis of patients with tumors with high stromal nuclear procaspase-8 is related to immune infiltration, a known favorable prognostic factor. No significant associations were detected in analysis of lung squamous cell carcinoma patients. Our results suggest that cytoplasmic expression of FLIP in the tumor and nuclear expression of procaspase-8 in the stroma are prognostically relevant in non-small-cell adenocarcinomas but not in squamous cell carcinomas of the lung.