Cargando…
Machine-learned and codified synthesis parameters of oxide materials
Predictive materials design has rapidly accelerated in recent years with the advent of large-scale resources, such as materials structure and property databases generated by ab initio computations. In the absence of analogous ab initio frameworks for materials synthesis, high-throughput and machine...
Autores principales: | Kim, Edward, Huang, Kevin, Tomala, Alex, Matthews, Sara, Strubell, Emma, Saunders, Adam, McCallum, Andrew, Olivetti, Elsa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595045/ https://www.ncbi.nlm.nih.gov/pubmed/28895943 http://dx.doi.org/10.1038/sdata.2017.127 |
Ejemplares similares
-
Aluminum alloy compositions and properties extracted from a corpus of scientific manuscripts and US patents
por: Pfeiffer, Olivia P., et al.
Publicado: (2022) -
Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature
por: Wang, Zheren, et al.
Publicado: (2022) -
Text-mined dataset of inorganic materials synthesis recipes
por: Kononova, Olga, et al.
Publicado: (2019) -
Auto-generated materials database of Curie and Néel temperatures via semi-supervised relationship extraction
por: Court, Callum J., et al.
Publicado: (2018) -
A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand
por: Danylo, Olga, et al.
Publicado: (2021)