Cargando…
Survival of APC-mutant colorectal cancer cells requires interaction between tankyrase and a thiol peroxidase, peroxiredoxin II
Overexpression of mammalian 2-Cys peroxiredoxin (Prx) enzymes is observed in most cancer tissues. Nevertheless, their specific roles in colorectal cancer (CRC) progression has yet to be fully elucidated. Here, a novel molecular mechanism by which PrxII/Tankyrase (TNKS) interaction mediates survival...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Biochemistry and Molecular Biology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595167/ https://www.ncbi.nlm.nih.gov/pubmed/28683851 http://dx.doi.org/10.5483/BMBRep.2017.50.8.120 |
Sumario: | Overexpression of mammalian 2-Cys peroxiredoxin (Prx) enzymes is observed in most cancer tissues. Nevertheless, their specific roles in colorectal cancer (CRC) progression has yet to be fully elucidated. Here, a novel molecular mechanism by which PrxII/Tankyrase (TNKS) interaction mediates survival of adenomatous polyposis coli (APC)-mutant CRC cells was explored. In mice with an inactivating APC mutation, a model of spontaneous intestinal tumorigenesis, deletion of PrxII reduced intestinal adenomatous polyposis and thereby increased survival. In APC-mutant human CRC cells, PrxII depletion hindered PARP-dependent Axin1 degradation through TNKS inactivation. H(2)O(2)-sensitive Cys residues in the zinc-binding domain of TNKS1 was found to be crucial for PARsylation activity. Mechanistically, direct binding of PrxII to ARC4/5 domains of TNKS conferred vital redox protection against oxidative inactivation. As a proof-of-concept experiment, a chemical compound targeting PrxII inhibited the growth of tumors xenografted with APC-mutation-positive CRC cells. Collectively, the results provide evidence revealing a novel redox mechanism for regulating TNKS activity such that physical interaction between PrxII and TNKS promoted survival of APC-mutant colorectal cancer cells by PrxII-dependent antioxidant shielding. |
---|