Cargando…

Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy

PURPOSE: To examine the diagnostic capability of the full retinal and inner retinal thickness measures in differentiating individuals with diabetic peripheral neuropathy (DPN) from those without neuropathy and non-diabetic controls. METHODS: Individuals with (n = 44) and without (n = 107) diabetic n...

Descripción completa

Detalles Bibliográficos
Autores principales: Srinivasan, Sangeetha, Pritchard, Nicola, Sampson, Geoff P., Edwards, Katie, Vagenas, Dimitrios, Russell, Anthony W., Malik, Rayaz A., Efron, Nathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595257/
https://www.ncbi.nlm.nih.gov/pubmed/27423690
http://dx.doi.org/10.1016/j.optom.2016.05.003
_version_ 1783263336714993664
author Srinivasan, Sangeetha
Pritchard, Nicola
Sampson, Geoff P.
Edwards, Katie
Vagenas, Dimitrios
Russell, Anthony W.
Malik, Rayaz A.
Efron, Nathan
author_facet Srinivasan, Sangeetha
Pritchard, Nicola
Sampson, Geoff P.
Edwards, Katie
Vagenas, Dimitrios
Russell, Anthony W.
Malik, Rayaz A.
Efron, Nathan
author_sort Srinivasan, Sangeetha
collection PubMed
description PURPOSE: To examine the diagnostic capability of the full retinal and inner retinal thickness measures in differentiating individuals with diabetic peripheral neuropathy (DPN) from those without neuropathy and non-diabetic controls. METHODS: Individuals with (n = 44) and without (n = 107) diabetic neuropathy and non-diabetic control (n = 42) participants underwent spectral domain optical coherence tomography (SDOCT). Retinal thickness in the central 1 mm zone (including the fovea), parafovea and perifovea was assessed in addition to ganglion cell complex (GCC) global loss volume (GCC GLV) and focal loss volume (GCC FLV), and retinal nerve fiber layer (RNFL) thickness. Diabetic neuropathy was defined using a modified neuropathy disability score (NDS) recorded on a 0–10 scale, wherein, NDS ≥3 indicated neuropathy and NDS indicated <3 no neuropathy. Diagnostic performance was assessed by areas under the receiver operating characteristic curves (AUCs), 95 per cent confidence intervals (CI), sensitivities at fixed specificities, positive likelihood ratio (+LR), negative likelihood ratio (−LR) and the cut-off points for the best AUCs obtained. RESULTS: The AUC for GCC FLV was 0.732 (95% CI: 0.624–0.840, p < 0.001) with a sensitivity of 53% and specificity of 80% for differentiating DPN from controls. Evaluation of the LRs showed that GCC FLV was associated with only small effects on the post-test probability of the disease. The cut-off point calculated using the Youden index was 0.48% (67% sensitivity and 73% specificity) for GCC FLV. For distinguishing those with neuropathy from those without neuropathy, the AUCs of retinal parameters ranged from 0.508 for the central zone to 0.690 for the inferior RNFL thickness. For distinguishing those with moderate or advanced neuropathy from those with mild or no neuropathy, the inferior RNFL thickness demonstrated the highest AUC of 0.820, (95% CI: 0.731–0.909, p < 0.001) with a sensitivity of 69% and 80% specificity. The cut-off-point for the inferior RNFL thickness was 97 μm, with 81% sensitivity and 72% specificity. CONCLUSIONS: The GCC FLV can differentiate individuals with diabetic neuropathy from healthy controls, while the inferior RNFL thickness is able to differentiate those with greater degrees of neuropathy from those with mild or no neuropathy, both with an acceptable level of accuracy. Optical coherence tomography represents a non-invasive technology that aids in detection of retinal structural changes in patients with established diabetic neuropathy. Further refinement of the technique and the analytical approaches may be required to identify patients with minimal neuropathy.
format Online
Article
Text
id pubmed-5595257
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-55952572017-09-20 Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy Srinivasan, Sangeetha Pritchard, Nicola Sampson, Geoff P. Edwards, Katie Vagenas, Dimitrios Russell, Anthony W. Malik, Rayaz A. Efron, Nathan J Optom Original Article PURPOSE: To examine the diagnostic capability of the full retinal and inner retinal thickness measures in differentiating individuals with diabetic peripheral neuropathy (DPN) from those without neuropathy and non-diabetic controls. METHODS: Individuals with (n = 44) and without (n = 107) diabetic neuropathy and non-diabetic control (n = 42) participants underwent spectral domain optical coherence tomography (SDOCT). Retinal thickness in the central 1 mm zone (including the fovea), parafovea and perifovea was assessed in addition to ganglion cell complex (GCC) global loss volume (GCC GLV) and focal loss volume (GCC FLV), and retinal nerve fiber layer (RNFL) thickness. Diabetic neuropathy was defined using a modified neuropathy disability score (NDS) recorded on a 0–10 scale, wherein, NDS ≥3 indicated neuropathy and NDS indicated <3 no neuropathy. Diagnostic performance was assessed by areas under the receiver operating characteristic curves (AUCs), 95 per cent confidence intervals (CI), sensitivities at fixed specificities, positive likelihood ratio (+LR), negative likelihood ratio (−LR) and the cut-off points for the best AUCs obtained. RESULTS: The AUC for GCC FLV was 0.732 (95% CI: 0.624–0.840, p < 0.001) with a sensitivity of 53% and specificity of 80% for differentiating DPN from controls. Evaluation of the LRs showed that GCC FLV was associated with only small effects on the post-test probability of the disease. The cut-off point calculated using the Youden index was 0.48% (67% sensitivity and 73% specificity) for GCC FLV. For distinguishing those with neuropathy from those without neuropathy, the AUCs of retinal parameters ranged from 0.508 for the central zone to 0.690 for the inferior RNFL thickness. For distinguishing those with moderate or advanced neuropathy from those with mild or no neuropathy, the inferior RNFL thickness demonstrated the highest AUC of 0.820, (95% CI: 0.731–0.909, p < 0.001) with a sensitivity of 69% and 80% specificity. The cut-off-point for the inferior RNFL thickness was 97 μm, with 81% sensitivity and 72% specificity. CONCLUSIONS: The GCC FLV can differentiate individuals with diabetic neuropathy from healthy controls, while the inferior RNFL thickness is able to differentiate those with greater degrees of neuropathy from those with mild or no neuropathy, both with an acceptable level of accuracy. Optical coherence tomography represents a non-invasive technology that aids in detection of retinal structural changes in patients with established diabetic neuropathy. Further refinement of the technique and the analytical approaches may be required to identify patients with minimal neuropathy. Elsevier 2017 2016-07-14 /pmc/articles/PMC5595257/ /pubmed/27423690 http://dx.doi.org/10.1016/j.optom.2016.05.003 Text en © 2016 Spanish General Council of Optometry. Published by Elsevier Espa˜na, S.L.U. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Srinivasan, Sangeetha
Pritchard, Nicola
Sampson, Geoff P.
Edwards, Katie
Vagenas, Dimitrios
Russell, Anthony W.
Malik, Rayaz A.
Efron, Nathan
Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy
title Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy
title_full Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy
title_fullStr Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy
title_full_unstemmed Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy
title_short Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy
title_sort diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595257/
https://www.ncbi.nlm.nih.gov/pubmed/27423690
http://dx.doi.org/10.1016/j.optom.2016.05.003
work_keys_str_mv AT srinivasansangeetha diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy
AT pritchardnicola diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy
AT sampsongeoffp diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy
AT edwardskatie diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy
AT vagenasdimitrios diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy
AT russellanthonyw diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy
AT malikrayaza diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy
AT efronnathan diagnosticcapabilityofretinalthicknessmeasuresindiabeticperipheralneuropathy