Cargando…

Transcriptome analysis of Phytolacca americana L. in response to cadmium stress

Phytolacca americana L. (pokeweed) has metal phytoremediation potential, but little is known about its metal accumulation-related genes. In this study, the de novo sequencing of total RNA produced 53.15 million reads covering 10.63 gigabases of transcriptome raw data in cadmium (Cd)-treated and untr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yongkun, Zhi, Junkai, Zhang, Hao, Li, Jian, Zhao, Qihong, Xu, Jichen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595333/
https://www.ncbi.nlm.nih.gov/pubmed/28898278
http://dx.doi.org/10.1371/journal.pone.0184681
Descripción
Sumario:Phytolacca americana L. (pokeweed) has metal phytoremediation potential, but little is known about its metal accumulation-related genes. In this study, the de novo sequencing of total RNA produced 53.15 million reads covering 10.63 gigabases of transcriptome raw data in cadmium (Cd)-treated and untreated pokeweed. Of the 97,502 assembled unigenes, 42,197 had significant matches in a public database and were annotated accordingly. An expression level comparison between the samples revealed 1515 differentially expressed genes (DEGs), 923 down- and 592 up-regulated under Cd treatment. A KEGG pathway enrichment analysis of DEGs revealed that they were involved in 72 metabolism pathways, with photosynthesis, phenylalanine metabolism, ribosome, phenylpropanoid biosynthesis, flavonoid biosynthesis and carbon fixation in photosynthetic organisms containing 24, 18, 72, 14, 7 and 15 genes, respectively. Genes related to heavy metal tolerance, absorption, transport and accumulation were also identified, including 11 expansins, 8 nicotianamine synthases, 6 aquaporins, 4 ZRT/IRT-like proteins, 3 ABC transporters and 3 metallothioneins. The gene expression results of 12 randomly selected DEGs were validated using quantitative real-time PCR, and showed different response patterns to Cd in their roots, stems and leaves. These results may be helpful in increasing our understanding of heavy metal hyperaccumulators and in future phytoremediation applications.