Cargando…
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction
Samples collected in pharmacogenomics databases typically belong to various cancer types. For designing a drug sensitivity predictive model from such a database, a natural question arises whether a model trained on diverse inter-tumor heterogeneous samples will perform similar to a predictive model...
Autores principales: | Rahman, Raziur, Matlock, Kevin, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595802/ https://www.ncbi.nlm.nih.gov/pubmed/28900181 http://dx.doi.org/10.1038/s41598-017-11665-4 |
Ejemplares similares
-
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2016) -
A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction
por: Haider, Saad, et al.
Publicado: (2015) -
Application of transfer learning for cancer drug sensitivity prediction
por: Dhruba, Saugato Rahman, et al.
Publicado: (2018) -
Investigation of model stacking for drug sensitivity prediction
por: Matlock, Kevin, et al.
Publicado: (2018) -
Functional random forest with applications in dose-response predictions
por: Rahman, Raziur, et al.
Publicado: (2019)