Cargando…

Magnetoelectric oxide based stochastic spin device towards solving combinatorial optimization problems

Solving combinatorial optimization problems is challenging. Mapping onto the ground-state search problem of the Ising Hamiltonian is a promising approach in this field, where the components of the optimization set are modeled as artificial spin units. The search for a suitable physical system to rea...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharmin, Saima, Shim, Yong, Roy, Kaushik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595819/
https://www.ncbi.nlm.nih.gov/pubmed/28900224
http://dx.doi.org/10.1038/s41598-017-11732-w
Descripción
Sumario:Solving combinatorial optimization problems is challenging. Mapping onto the ground-state search problem of the Ising Hamiltonian is a promising approach in this field, where the components of the optimization set are modeled as artificial spin units. The search for a suitable physical system to realize these spin units is an active area of research. In this work, we have demonstrated a scheme to model the Ising Hamiltonian with multiferroic oxide/nanomagnet units. Although nanomagnet-based implementation has been shown before, we have utilized the magnetoelectric effect of the multiferroics to make voltagecontrolled spin units with less current flow in the network. Moreover, we have proposed a unique approach of configuring the coupling network of the system directly from the Ising Hamiltonian of a traveling salesman problem (TSP). We have developed a coupled micromagnetic simulation framework and solved TSPs of size 26-city and 15-city with an accuracy of 100% for the latter.