Cargando…
A Computational Model for the Automatic Diagnosis of Attention Deficit Hyperactivity Disorder Based on Functional Brain Volume
In this paper, we investigated the problem of computer-aided diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) using machine learning techniques. With the ADHD-200 dataset, we developed a Support Vector Machine (SVM) model to classify ADHD patients from typically developing controls (TDCs...
Autores principales: | Tan, Lirong, Guo, Xinyu, Ren, Sheng, Epstein, Jeff N., Lu, Long J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596085/ https://www.ncbi.nlm.nih.gov/pubmed/28943846 http://dx.doi.org/10.3389/fncom.2017.00075 |
Ejemplares similares
-
Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects
por: Dey, Soumyabrata, et al.
Publicado: (2014) -
Attention-deficit/hyperactive disorder updates
por: Kessi, Miriam, et al.
Publicado: (2022) -
A review of attention-deficit/hyperactivity disorder from the perspective of brain networks
por: De La Fuente, Angelica, et al.
Publicado: (2013) -
Normal Neurochemistry in the Prefrontal and Cerebellar Brain of Adults with Attention-Deficit Hyperactivity Disorder
por: Endres, Dominique, et al.
Publicado: (2015) -
Cognitive Control Deficits in Children With Subthreshold Attention-Deficit/Hyperactivity Disorder
por: Chen, Caiqi, et al.
Publicado: (2022)