Cargando…
Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness
Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch proc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597163/ https://www.ncbi.nlm.nih.gov/pubmed/28952567 http://dx.doi.org/10.3390/bioengineering3010005 |
_version_ | 1783263660496388096 |
---|---|
author | Konakovsky, Viktor Clemens, Christoph Müller, Markus Michael Bechmann, Jan Berger, Martina Schlatter, Stefan Herwig, Christoph |
author_facet | Konakovsky, Viktor Clemens, Christoph Müller, Markus Michael Bechmann, Jan Berger, Martina Schlatter, Stefan Herwig, Christoph |
author_sort | Konakovsky, Viktor |
collection | PubMed |
description | Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution, we wish to extend the basic repertoire of available process control strategies, which will open up new avenues in automation technology and radically improve process robustness in both process development and manufacturing. |
format | Online Article Text |
id | pubmed-5597163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55971632017-09-21 Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness Konakovsky, Viktor Clemens, Christoph Müller, Markus Michael Bechmann, Jan Berger, Martina Schlatter, Stefan Herwig, Christoph Bioengineering (Basel) Article Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution, we wish to extend the basic repertoire of available process control strategies, which will open up new avenues in automation technology and radically improve process robustness in both process development and manufacturing. MDPI 2016-01-11 /pmc/articles/PMC5597163/ /pubmed/28952567 http://dx.doi.org/10.3390/bioengineering3010005 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Konakovsky, Viktor Clemens, Christoph Müller, Markus Michael Bechmann, Jan Berger, Martina Schlatter, Stefan Herwig, Christoph Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness |
title | Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness |
title_full | Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness |
title_fullStr | Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness |
title_full_unstemmed | Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness |
title_short | Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness |
title_sort | metabolic control in mammalian fed-batch cell cultures for reduced lactic acid accumulation and improved process robustness |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597163/ https://www.ncbi.nlm.nih.gov/pubmed/28952567 http://dx.doi.org/10.3390/bioengineering3010005 |
work_keys_str_mv | AT konakovskyviktor metaboliccontrolinmammalianfedbatchcellculturesforreducedlacticacidaccumulationandimprovedprocessrobustness AT clemenschristoph metaboliccontrolinmammalianfedbatchcellculturesforreducedlacticacidaccumulationandimprovedprocessrobustness AT mullermarkusmichael metaboliccontrolinmammalianfedbatchcellculturesforreducedlacticacidaccumulationandimprovedprocessrobustness AT bechmannjan metaboliccontrolinmammalianfedbatchcellculturesforreducedlacticacidaccumulationandimprovedprocessrobustness AT bergermartina metaboliccontrolinmammalianfedbatchcellculturesforreducedlacticacidaccumulationandimprovedprocessrobustness AT schlatterstefan metaboliccontrolinmammalianfedbatchcellculturesforreducedlacticacidaccumulationandimprovedprocessrobustness AT herwigchristoph metaboliccontrolinmammalianfedbatchcellculturesforreducedlacticacidaccumulationandimprovedprocessrobustness |