Cargando…
Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber
Parkinson’s patients suffer from severe tremor due to an abnormality in their central oscillator. Medications used to decrease involuntary antagonistic muscles contraction can threaten their life. However, mechanical vibration absorbers can be used as an alternative treatment. The objective of this...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597187/ https://www.ncbi.nlm.nih.gov/pubmed/28952580 http://dx.doi.org/10.3390/bioengineering3030018 |
_version_ | 1783263665657479168 |
---|---|
author | Gebai, Sarah Hammoud, Mohammad Hallal, Ali Khachfe, Hassan |
author_facet | Gebai, Sarah Hammoud, Mohammad Hallal, Ali Khachfe, Hassan |
author_sort | Gebai, Sarah |
collection | PubMed |
description | Parkinson’s patients suffer from severe tremor due to an abnormality in their central oscillator. Medications used to decrease involuntary antagonistic muscles contraction can threaten their life. However, mechanical vibration absorbers can be used as an alternative treatment. The objective of this study is to provide a dynamic modeling of the human hand that describes the biodynamic response of Parkinson’s patients and to design an effective tuned vibration absorber able to suppress their pathological tremor. The hand is modeled as a three degrees-of-freedom (DOF) system describing the flexion motion at the proximal joints on the horizontal plane. Resting tremor is modeled as dual harmonic excitation due to shoulder and elbow muscle activation operating at resonance frequencies. The performance of the single dynamic vibration absorber (DVA) is studied when attached to the forearm and compared with the dual DVA tuned at both excitation frequencies. Equations of motion are derived and solved using the complex transfer function of the non-Lagrangian system. The absorber’s systems are designed as a stainless steel alloy cantilevered beam with an attached copper mass. The dual DVA was the most efficient absorber which reduces 98.3%–99.5%, 97.0%–97.3% and 97.4%–97.5% of the Parkinson’s tremor amplitude at the shoulder, elbow and wrist joint. |
format | Online Article Text |
id | pubmed-5597187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55971872017-09-21 Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber Gebai, Sarah Hammoud, Mohammad Hallal, Ali Khachfe, Hassan Bioengineering (Basel) Article Parkinson’s patients suffer from severe tremor due to an abnormality in their central oscillator. Medications used to decrease involuntary antagonistic muscles contraction can threaten their life. However, mechanical vibration absorbers can be used as an alternative treatment. The objective of this study is to provide a dynamic modeling of the human hand that describes the biodynamic response of Parkinson’s patients and to design an effective tuned vibration absorber able to suppress their pathological tremor. The hand is modeled as a three degrees-of-freedom (DOF) system describing the flexion motion at the proximal joints on the horizontal plane. Resting tremor is modeled as dual harmonic excitation due to shoulder and elbow muscle activation operating at resonance frequencies. The performance of the single dynamic vibration absorber (DVA) is studied when attached to the forearm and compared with the dual DVA tuned at both excitation frequencies. Equations of motion are derived and solved using the complex transfer function of the non-Lagrangian system. The absorber’s systems are designed as a stainless steel alloy cantilevered beam with an attached copper mass. The dual DVA was the most efficient absorber which reduces 98.3%–99.5%, 97.0%–97.3% and 97.4%–97.5% of the Parkinson’s tremor amplitude at the shoulder, elbow and wrist joint. MDPI 2016-07-05 /pmc/articles/PMC5597187/ /pubmed/28952580 http://dx.doi.org/10.3390/bioengineering3030018 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gebai, Sarah Hammoud, Mohammad Hallal, Ali Khachfe, Hassan Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber |
title | Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber |
title_full | Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber |
title_fullStr | Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber |
title_full_unstemmed | Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber |
title_short | Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber |
title_sort | tremor reduction at the palm of a parkinson’s patient using dynamic vibration absorber |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597187/ https://www.ncbi.nlm.nih.gov/pubmed/28952580 http://dx.doi.org/10.3390/bioengineering3030018 |
work_keys_str_mv | AT gebaisarah tremorreductionatthepalmofaparkinsonspatientusingdynamicvibrationabsorber AT hammoudmohammad tremorreductionatthepalmofaparkinsonspatientusingdynamicvibrationabsorber AT hallalali tremorreductionatthepalmofaparkinsonspatientusingdynamicvibrationabsorber AT khachfehassan tremorreductionatthepalmofaparkinsonspatientusingdynamicvibrationabsorber |