Cargando…
Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol
Human PrimPol is a DNA primase/polymerase involved in DNA damage tolerance and prevents nuclear genome instability. PrimPol is also localized to the mitochondria, but its precise function in mitochondrial DNA maintenance has remained elusive. PrimPol works both as a translesion (TLS) polymerase and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597260/ https://www.ncbi.nlm.nih.gov/pubmed/28902865 http://dx.doi.org/10.1371/journal.pone.0184489 |
_version_ | 1783263679227101184 |
---|---|
author | Boldinova, Elizaveta O. Stojkovič, Gorazd Khairullin, Rafil Wanrooij, Sjoerd Makarova, Alena V. |
author_facet | Boldinova, Elizaveta O. Stojkovič, Gorazd Khairullin, Rafil Wanrooij, Sjoerd Makarova, Alena V. |
author_sort | Boldinova, Elizaveta O. |
collection | PubMed |
description | Human PrimPol is a DNA primase/polymerase involved in DNA damage tolerance and prevents nuclear genome instability. PrimPol is also localized to the mitochondria, but its precise function in mitochondrial DNA maintenance has remained elusive. PrimPol works both as a translesion (TLS) polymerase and as the primase that restarts DNA replication after a lesion. However, the observed biochemical activities of PrimPol vary considerably between studies as a result of different reaction conditions used. To reveal the effects of reaction composition on PrimPol DNA polymerase activity, we tested the polymerase activity in the presence of various buffer agents, salt concentrations, pH values and metal cofactors. Additionally, the enzyme stability was analyzed under various conditions. We demonstrate that the reaction buffer with pH 6–6.5, low salt concentrations and 3 mM Mg(2+) or 0.3–3 mM Mn(2+) cofactor ions supports the highest DNA polymerase activity of human PrimPol in vitro. The DNA polymerase activity of PrimPol was found to be stable after multiple freeze-thaw cycles and prolonged protein incubation on ice. However, rapid heat-inactivation of the enzyme was observed at 37ºC. We also for the first time describe the purification of human PrimPol from a human cell line and compare the benefits of this approach to the expression in Escherichia coli and in Saccharomyces cerevisiae cells. Our results show that active PrimPol can be purified from E. coli and human suspension cell line in high quantities and that the activity of the purified enzyme is similar in both expression systems. Conversely, the yield of full-length protein expressed in S. cerevisiae was considerably lower and this system is therefore not recommended for expression of full-length recombinant human PrimPol. |
format | Online Article Text |
id | pubmed-5597260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55972602017-09-15 Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol Boldinova, Elizaveta O. Stojkovič, Gorazd Khairullin, Rafil Wanrooij, Sjoerd Makarova, Alena V. PLoS One Research Article Human PrimPol is a DNA primase/polymerase involved in DNA damage tolerance and prevents nuclear genome instability. PrimPol is also localized to the mitochondria, but its precise function in mitochondrial DNA maintenance has remained elusive. PrimPol works both as a translesion (TLS) polymerase and as the primase that restarts DNA replication after a lesion. However, the observed biochemical activities of PrimPol vary considerably between studies as a result of different reaction conditions used. To reveal the effects of reaction composition on PrimPol DNA polymerase activity, we tested the polymerase activity in the presence of various buffer agents, salt concentrations, pH values and metal cofactors. Additionally, the enzyme stability was analyzed under various conditions. We demonstrate that the reaction buffer with pH 6–6.5, low salt concentrations and 3 mM Mg(2+) or 0.3–3 mM Mn(2+) cofactor ions supports the highest DNA polymerase activity of human PrimPol in vitro. The DNA polymerase activity of PrimPol was found to be stable after multiple freeze-thaw cycles and prolonged protein incubation on ice. However, rapid heat-inactivation of the enzyme was observed at 37ºC. We also for the first time describe the purification of human PrimPol from a human cell line and compare the benefits of this approach to the expression in Escherichia coli and in Saccharomyces cerevisiae cells. Our results show that active PrimPol can be purified from E. coli and human suspension cell line in high quantities and that the activity of the purified enzyme is similar in both expression systems. Conversely, the yield of full-length protein expressed in S. cerevisiae was considerably lower and this system is therefore not recommended for expression of full-length recombinant human PrimPol. Public Library of Science 2017-09-13 /pmc/articles/PMC5597260/ /pubmed/28902865 http://dx.doi.org/10.1371/journal.pone.0184489 Text en © 2017 Boldinova et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Boldinova, Elizaveta O. Stojkovič, Gorazd Khairullin, Rafil Wanrooij, Sjoerd Makarova, Alena V. Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol |
title | Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol |
title_full | Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol |
title_fullStr | Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol |
title_full_unstemmed | Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol |
title_short | Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol |
title_sort | optimization of the expression, purification and polymerase activity reaction conditions of recombinant human primpol |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597260/ https://www.ncbi.nlm.nih.gov/pubmed/28902865 http://dx.doi.org/10.1371/journal.pone.0184489 |
work_keys_str_mv | AT boldinovaelizavetao optimizationoftheexpressionpurificationandpolymeraseactivityreactionconditionsofrecombinanthumanprimpol AT stojkovicgorazd optimizationoftheexpressionpurificationandpolymeraseactivityreactionconditionsofrecombinanthumanprimpol AT khairullinrafil optimizationoftheexpressionpurificationandpolymeraseactivityreactionconditionsofrecombinanthumanprimpol AT wanrooijsjoerd optimizationoftheexpressionpurificationandpolymeraseactivityreactionconditionsofrecombinanthumanprimpol AT makarovaalenav optimizationoftheexpressionpurificationandpolymeraseactivityreactionconditionsofrecombinanthumanprimpol |