Cargando…

Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger

BACKGROUND: Galactofuranose (Galf)-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Galf-containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Joohae, Tefsen, Boris, Arentshorst, Mark, Lagendijk, Ellen, van den Hondel, Cees AMJJ, van Die, Irma, Ram, Arthur FJ
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598270/
https://www.ncbi.nlm.nih.gov/pubmed/28955448
http://dx.doi.org/10.1186/s40694-014-0006-7
_version_ 1783263870178033664
author Park, Joohae
Tefsen, Boris
Arentshorst, Mark
Lagendijk, Ellen
van den Hondel, Cees AMJJ
van Die, Irma
Ram, Arthur FJ
author_facet Park, Joohae
Tefsen, Boris
Arentshorst, Mark
Lagendijk, Ellen
van den Hondel, Cees AMJJ
van Die, Irma
Ram, Arthur FJ
author_sort Park, Joohae
collection PubMed
description BACKGROUND: Galactofuranose (Galf)-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Galf-containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall. Activation of CWI-pathway in Aspergillus niger is characterized by the specific induction of the agsA gene, which encodes a cell wall α-glucan synthase. RESULTS: In this study, we screened a collection of cell wall mutants with an induced expression of agsA for defects in Galf biosynthesis using a with anti-Galf antibody (L10). From this collection of mutants, we previously identified mutants in the UDP-galactopyranose mutase encoding gene (ugmA). Here, we have identified six additional UDP-galactopyranose mutase (ugmA) mutants and one mutant (named mutant #41) in an additional complementation group that displayed strongly reduced Galf-levels in the cell wall. By using a whole genome sequencing approach, 21 SNPs in coding regions were identified between mutant #41 and its parental strain which changed the amino acid sequence of the encoded proteins. One of these mutations was in gene An14g03820, which codes for a putative UDP-glucose-4-epimerase (UgeA). The A to G mutation in this gene causes an amino acid change of Asn to Asp at position 191 in the UgeA protein. Targeted deletion of ugeA resulted in an even more severe reduction of Galf in N-linked glucans, indicating that the UgeA protein in mutant #41 is partially active. The ugeA gene is also required for growth on galactose despite the presence of two UgeA homologs in the A. niger genome. CONCLUSION: By using a classical mutant screen and whole genome sequencing of a new Galf-deficient mutant, the UDP-glucose-4-epimerase gene (ugeA) has been identified. UgeA is required for the biosynthesis of Galf as well as for galactose metabolism in Aspergillus niger. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40694-014-0006-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5598270
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-55982702017-09-27 Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger Park, Joohae Tefsen, Boris Arentshorst, Mark Lagendijk, Ellen van den Hondel, Cees AMJJ van Die, Irma Ram, Arthur FJ Fungal Biol Biotechnol Research BACKGROUND: Galactofuranose (Galf)-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Galf-containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall. Activation of CWI-pathway in Aspergillus niger is characterized by the specific induction of the agsA gene, which encodes a cell wall α-glucan synthase. RESULTS: In this study, we screened a collection of cell wall mutants with an induced expression of agsA for defects in Galf biosynthesis using a with anti-Galf antibody (L10). From this collection of mutants, we previously identified mutants in the UDP-galactopyranose mutase encoding gene (ugmA). Here, we have identified six additional UDP-galactopyranose mutase (ugmA) mutants and one mutant (named mutant #41) in an additional complementation group that displayed strongly reduced Galf-levels in the cell wall. By using a whole genome sequencing approach, 21 SNPs in coding regions were identified between mutant #41 and its parental strain which changed the amino acid sequence of the encoded proteins. One of these mutations was in gene An14g03820, which codes for a putative UDP-glucose-4-epimerase (UgeA). The A to G mutation in this gene causes an amino acid change of Asn to Asp at position 191 in the UgeA protein. Targeted deletion of ugeA resulted in an even more severe reduction of Galf in N-linked glucans, indicating that the UgeA protein in mutant #41 is partially active. The ugeA gene is also required for growth on galactose despite the presence of two UgeA homologs in the A. niger genome. CONCLUSION: By using a classical mutant screen and whole genome sequencing of a new Galf-deficient mutant, the UDP-glucose-4-epimerase gene (ugeA) has been identified. UgeA is required for the biosynthesis of Galf as well as for galactose metabolism in Aspergillus niger. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40694-014-0006-7) contains supplementary material, which is available to authorized users. BioMed Central 2014-10-14 /pmc/articles/PMC5598270/ /pubmed/28955448 http://dx.doi.org/10.1186/s40694-014-0006-7 Text en © Park et al.; licensee BioMed Central 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Park, Joohae
Tefsen, Boris
Arentshorst, Mark
Lagendijk, Ellen
van den Hondel, Cees AMJJ
van Die, Irma
Ram, Arthur FJ
Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger
title Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger
title_full Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger
title_fullStr Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger
title_full_unstemmed Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger
title_short Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger
title_sort identification of the udp-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in a. niger
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598270/
https://www.ncbi.nlm.nih.gov/pubmed/28955448
http://dx.doi.org/10.1186/s40694-014-0006-7
work_keys_str_mv AT parkjoohae identificationoftheudpglucose4epimeraserequiredforgalactofuranosebiosynthesisandgalactosemetabolisminaniger
AT tefsenboris identificationoftheudpglucose4epimeraserequiredforgalactofuranosebiosynthesisandgalactosemetabolisminaniger
AT arentshorstmark identificationoftheudpglucose4epimeraserequiredforgalactofuranosebiosynthesisandgalactosemetabolisminaniger
AT lagendijkellen identificationoftheudpglucose4epimeraserequiredforgalactofuranosebiosynthesisandgalactosemetabolisminaniger
AT vandenhondelceesamjj identificationoftheudpglucose4epimeraserequiredforgalactofuranosebiosynthesisandgalactosemetabolisminaniger
AT vandieirma identificationoftheudpglucose4epimeraserequiredforgalactofuranosebiosynthesisandgalactosemetabolisminaniger
AT ramarthurfj identificationoftheudpglucose4epimeraserequiredforgalactofuranosebiosynthesisandgalactosemetabolisminaniger