Cargando…

Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L.), protects rat tissues against oxidative damage after acute ethanol administration

Ethanol-mediated free radical generation is directly involved in alcoholic liver disease. In addition, chronic alcohol bingeing also induces pathological changes and dysfunction in multi-organs. In the present study, the protective effect of xanthohumol (XN) on ethanol-induced damage was evaluated b...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinto, Carmen, Cestero, Juan J., Rodríguez-Galdón, Beatriz, Macías, Pedro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598346/
https://www.ncbi.nlm.nih.gov/pubmed/28962286
http://dx.doi.org/10.1016/j.toxrep.2014.09.004
Descripción
Sumario:Ethanol-mediated free radical generation is directly involved in alcoholic liver disease. In addition, chronic alcohol bingeing also induces pathological changes and dysfunction in multi-organs. In the present study, the protective effect of xanthohumol (XN) on ethanol-induced damage was evaluated by determining antioxidative parameters and stress oxidative markers in liver, kidney, lung, heart and brain of rats. An acute treatment (4 g/kg b.w.) of ethanol resulted in the depletion of superoxide dismutase, catalase and glutathione S-transferase activities and reduced glutathione content. This effect was accompanied by the increased activity of tissue damage marker enzymes (glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and lactate dehydrogenase) and a significant increase in lipid peroxidation and hydrogen peroxide concentrations. Pre-treatment with XN protected rat tissues from ethanol-induced oxidative imbalance and partially mitigated the levels to nearly normal levels in all tissues checked. This effect was dose dependent, suggesting that XN reduces stress oxidative and protects rat tissues from alcohol-induced injury.