Cargando…
Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion
Male and female rats (26-day-old) were exposed to 0.0, 0.4, 4 or 40 mg/kg body weight silver acetate (AgAc) in drinking water for 10 weeks prior to and during mating. Sperm-positive females remained within their dose groups and were exposed to silver acetate during gestation and lactation. At postna...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598402/ https://www.ncbi.nlm.nih.gov/pubmed/28962367 http://dx.doi.org/10.1016/j.toxrep.2014.12.008 |
Sumario: | Male and female rats (26-day-old) were exposed to 0.0, 0.4, 4 or 40 mg/kg body weight silver acetate (AgAc) in drinking water for 10 weeks prior to and during mating. Sperm-positive females remained within their dose groups and were exposed to silver acetate during gestation and lactation. At postnatal day 26, the effect of silver ions on the developing F1 generation rat thymus was evaluated at the transcriptional level using whole-genome microarrays. Gene expression profiling analyses identified a dozen differentially expressed genes (DEGs) in each dose group using a loose criterion of fold change (FC) >1.5 and unadjusted p < 0.05, regardless of whether the analysis was conducted within each gender group or with both gender groups combined. No dose-dependent effect was observed on the number of DEGs. In addition, none of these genes had a false discovery rate (FDR) <0.05 after correction for multiple testing. These results in combination with the observation that thymus-to-body-weight ratios were not affected and no histopathological abnormalities were identified indicate that in utero exposure to silver ions up to 26.0 mg/kg (equivalent to 40.0 mg/kg silver acetate) did not have an adverse effect on the developing thymus. |
---|