Cargando…
Application of unsupervised analysis techniques to lung cancer patient data
This study applies unsupervised machine learning techniques for classification and clustering to a collection of descriptive variables from 10,442 lung cancer patient records in the Surveillance, Epidemiology, and End Results (SEER) program database. The goal is to automatically classify lung cancer...
Autores principales: | Lynch, Chip M., van Berkel, Victor H., Frieboes, Hermann B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598970/ https://www.ncbi.nlm.nih.gov/pubmed/28910336 http://dx.doi.org/10.1371/journal.pone.0184370 |
Ejemplares similares
-
Artificial Neural Networks in Motion Analysis—Applications of Unsupervised and Heuristic Feature Selection Techniques
por: Mundt, Marion, et al.
Publicado: (2020) -
Sampling techniques for supervised or unsupervised tasks
por: Ros, édéric, et al.
Publicado: (2019) -
Automated analysis of co-localized protein expression in histologic sections of prostate cancer
por: Tennill, Thomas A., et al.
Publicado: (2017) -
Application of Unsupervised Transfer Technique Based on Deep Learning Model in Physical Training
por: Zhao, Quanbin, et al.
Publicado: (2022) -
Simulation of Multispecies Desmoplastic Cancer Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm
por: Ng, Chin F., et al.
Publicado: (2018)