Cargando…

Two-dimensional Dirac particles in a Pöschl-Teller waveguide

We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Pöschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are determined via the solutions of a simple transcenden...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartmann, R. R., Portnoi, M. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599532/
https://www.ncbi.nlm.nih.gov/pubmed/28912569
http://dx.doi.org/10.1038/s41598-017-11411-w
Descripción
Sumario:We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Pöschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are determined via the solutions of a simple transcendental equation. For the symmetric case, the eigenfunctions of the supercritical states are expressed as spheroidal wave functions, and approximate analytical expressions are obtained for the corresponding eigenvalues. A universal condition for any square integrable symmetric potential is obtained for the minimum strength of the potential required to hold a bound state of zero energy. Applications for smooth electron waveguides in 2D Dirac-Weyl systems are discussed.