Cargando…

The interdependent network of gene regulation and metabolism is robust where it needs to be

Despite being highly interdependent, the major biochemical networks of the living cell—the networks of interacting genes and of metabolic reactions, respectively—have been approached mostly as separate systems so far. Recently, a framework for interdependent networks has emerged in the context of st...

Descripción completa

Detalles Bibliográficos
Autores principales: Klosik, David F., Grimbs, Anne, Bornholdt, Stefan, Hütt, Marc-Thorsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599549/
https://www.ncbi.nlm.nih.gov/pubmed/28912490
http://dx.doi.org/10.1038/s41467-017-00587-4
Descripción
Sumario:Despite being highly interdependent, the major biochemical networks of the living cell—the networks of interacting genes and of metabolic reactions, respectively—have been approached mostly as separate systems so far. Recently, a framework for interdependent networks has emerged in the context of statistical physics. In a first quantitative application of this framework to systems biology, here we study the interdependent network of gene regulation and metabolism for the model organism Escherichia coli in terms of a biologically motivated percolation model. Particularly, we approach the system’s conflicting tasks of reacting rapidly to (internal and external) perturbations, while being robust to minor environmental fluctuations. Considering its response to perturbations that are localized with respect to functional criteria, we find the interdependent system to be sensitive to gene regulatory and protein-level perturbations, yet robust against metabolic changes. We expect this approach to be applicable to a range of other interdependent networks.