Cargando…
Hybrid Ag nanowire transparent conductive electrodes with randomly oriented and grid-patterned Ag nanowire networks
To improve the electrical properties of silver nanowire (Ag NW) transparent conductive electrodes (TCEs), the density of Ag NW networks should be increased, to increase the number of percolation paths. However, because of the inverse relationship between optical transmittance and electrical resistiv...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599587/ https://www.ncbi.nlm.nih.gov/pubmed/28912537 http://dx.doi.org/10.1038/s41598-017-11964-w |
Sumario: | To improve the electrical properties of silver nanowire (Ag NW) transparent conductive electrodes (TCEs), the density of Ag NW networks should be increased, to increase the number of percolation paths. However, because of the inverse relationship between optical transmittance and electrical resistivity, the optical properties of Ag NW TCEs deteriorate with increasing density of the Ag NW network. In this study, a hybrid Ag NW electrode composed of randomly oriented and grid-patterned Ag NW networks is demonstrated. The hybrid Ag NW electrodes exhibit significantly improved sheet resistances and slightly decreased transmittances compared to randomly oriented Ag NW networks. Hybrid Ag NW TCEs show excellent mechanical flexibilities and durabilities in bending tests with a 5 mm radius of curvature. Moreover, flexible transparent film heaters (TFHs) based on the hybrid Ag NW electrodes show elevated maximum temperatures relative to TFHs based on randomly oriented Ag NW electrodes, when operated at the same input voltages. |
---|