Cargando…
Role of tumor necrosis factor–α and its receptors in diesel exhaust particle-induced pulmonary inflammation
Inhalation of diesel exhaust particles (DEP) induces an inflammatory reaction in the lung. However, the underlying mechanisms remain to be elucidated. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that operates by binding to tumor necrosis factor receptor 1 (TNFR1) and tumor nec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599628/ https://www.ncbi.nlm.nih.gov/pubmed/28912506 http://dx.doi.org/10.1038/s41598-017-11991-7 |
Sumario: | Inhalation of diesel exhaust particles (DEP) induces an inflammatory reaction in the lung. However, the underlying mechanisms remain to be elucidated. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that operates by binding to tumor necrosis factor receptor 1 (TNFR1) and tumor necrosis factor receptor 2 (TNFR2). The role of TNF-α signaling and the importance of either TNFR1 or TNFR2 in the DEP-induced inflammatory response has not yet been elucidated. TNF-α knockout (KO), TNFR1 KO, TNFR2 KO, TNFR1/TNFR2 double KO (TNFR-DKO) and wild type (WT) mice were intratracheally exposed to saline or DEP. Pro-inflammatory cells and cytokines were assessed in the bronchoalveolar lavage fluid (BALF). Exposure to DEP induced a dose-dependent inflammation in the BALF in WT mice. In addition, levels of TNF-α and its soluble receptors were increased upon exposure to DEP. The DEP-induced inflammation in the BALF was decreased in TNF-α KO, TNFR-DKO and TNFR2 KO mice. In contrast, the inflammatory response in the BALF of DEP-exposed TNFR1 KO mice was largely comparable with WT controls. In conclusion, these data provide evidence for a regulatory role of TNF-α in DEP-induced pulmonary inflammation and identify TNFR2 as the most important receptor in mediating these inflammatory effects. |
---|