Cargando…

Synthesis and in-vitro anticancer evaluation of polyarsenicals related to the marine sponge derived Arsenicin A

In the light of the promising bioactivity of the tetraarsenic marine metabolite arsenicin A, the dimethyl analogue 2 and four isomeric methylene homologues (including the natural product itself) were obtained using a one-pot microwave-assisted synthesis, starting from arsenic (III) oxide. Due to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Mancini, Ines, Planchestainer, Matteo, Defant, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599660/
https://www.ncbi.nlm.nih.gov/pubmed/28912556
http://dx.doi.org/10.1038/s41598-017-11566-6
Descripción
Sumario:In the light of the promising bioactivity of the tetraarsenic marine metabolite arsenicin A, the dimethyl analogue 2 and four isomeric methylene homologues (including the natural product itself) were obtained using a one-pot microwave-assisted synthesis, starting from arsenic (III) oxide. Due to the poor diagnostic value of the NMR technique in the structural elucidation of these molecules, they were fully characterized by mass spectrometry and infrared (IR)-spectroscopy, comparing density functional theory (DFT) simulated and experimental spectra. This synthetic procedure provided a fast and efficient access to the cytotoxicity evaluation of organoarsenical leads of the natural hit molecule. From in vitro screening, each tested compound resulted in being more active than the FDA-approved arsenic trioxide, with the most lipophilic molecule in the series showing the best growth inhibition of both leukemia and solid tumor cell lines. These results may open promising perspectives in the development of new more potent and selective arsenical drugs against solid tumors.