Cargando…

An omniphobic lubricant-infused coating produced by chemical vapor deposition of hydrophobic organosilanes attenuates clotting on catheter surfaces

Catheter associated thrombosis is an ongoing problem. Omniphobic coatings based on tethering biocompatible liquid lubricants on self-assembled monolayers of hydrophobic organosilanes attenuate clotting on surfaces. Herein we report an efficient, non-invasive and robust process for coating catheters...

Descripción completa

Detalles Bibliográficos
Autores principales: Badv, Maryam, Jaffer, Iqbal H., Weitz, Jeffrey I., Didar, Tohid F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599680/
https://www.ncbi.nlm.nih.gov/pubmed/28912558
http://dx.doi.org/10.1038/s41598-017-12149-1
Descripción
Sumario:Catheter associated thrombosis is an ongoing problem. Omniphobic coatings based on tethering biocompatible liquid lubricants on self-assembled monolayers of hydrophobic organosilanes attenuate clotting on surfaces. Herein we report an efficient, non-invasive and robust process for coating catheters with an antithrombotic, omniphobic lubricant-infused coating produced using chemical vapor deposition (CVD) of hydrophobic fluorine-based organosilanes. Compared with uncoated catheters, CVD coated catheters significantly attenuated thrombosis via the contact pathway of coagulation. When compared with the commonly used technique of liquid phase deposition (LPD) of fluorine-based organosilanes, the CVD method was more efficient and reproducible, resulted in less disruption of the outer polymeric layer of the catheters and produced greater antithrombotic activity. Therefore, omniphobic coating of catheters using the CVD method is a simple, straightforward and non-invasive procedure. This method has the potential to not only prevent catheter thrombosis, but also to prevent thrombosis on other blood-contacting medical devices.