Cargando…

Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum

Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin) or repressing conditions (glucose) was previously isolated after chemical mutagenesis. In order to identify the mole...

Descripción completa

Detalles Bibliográficos
Autores principales: Bravo-Ruiz, Gustavo, Sassi, Azza Hadj, Marcet-Houben, Marina, Di Pietro, Antonio, Gargouri, Ali, Gabaldon, Toni, Roncero, M. Isabel G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599776/
https://www.ncbi.nlm.nih.gov/pubmed/28951729
http://dx.doi.org/10.3389/fmicb.2017.01627
Descripción
Sumario:Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin) or repressing conditions (glucose) was previously isolated after chemical mutagenesis. In order to identify the molecular basis of this regulatory mechanism, the genomes of the wild type and the derived mutant strain were sequenced and compared, providing the first reference genome for this species. We used a phylogenomic approach to compare P. occitanis with other pectinolytic fungi and to trace expansions of gene families involved in carbohydrate degradation. Genome comparison between wild type and mutant identified seven mutations associated with predicted proteins. The most likely candidate was a mutation in a highly conserved serine residue of a conserved fungal protein containing a GAL4-like Zn(2)Cys(6) binuclear cluster DNA-binding domain and a fungus-specific transcription factor regulatory middle homology region. To functionally characterize the role of this candidate gene, the mutation was recapitulated in the predicted orthologue Fusarium oxysporum, a vascular wilt pathogen which secretes a wide array of plant cell wall degrading enzymes, including polygalacturonases, pectate lyases, xylanases and proteases, all of which contribute to infection. However, neither the null mutant nor a mutant carrying the analogous point mutation exhibited a deregulation of pectinolytic enzymes. The availability, annotation and phylogenomic analysis of the P. occitanis genome sequence represents an important resource for understanding the evolution and biology of this species, and sets the basis for the discovery of new genes of biotechnological interest for the degradation of complex polysaccharides.