Cargando…

Slow-release praziquantel for dogs: presentation of a new formulation for echinococcosis control

BACKGROUND: Echinococcosis is a serious, zoonotic, parasitic disease with worldwide distribution. According to a epidemiological survey in 2012 in China, there are 20,000 infected patients and more than 50 million people at the risk. As the dog is the main, definitive host, the Government of China e...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Bin, Zhou, Xiao-Nong, Zhang, Hao-Bing, Tao, Yi, Huo, Le-Le, Liu, Ni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599885/
https://www.ncbi.nlm.nih.gov/pubmed/28911334
http://dx.doi.org/10.1186/s40249-017-0357-4
Descripción
Sumario:BACKGROUND: Echinococcosis is a serious, zoonotic, parasitic disease with worldwide distribution. According to a epidemiological survey in 2012 in China, there are 20,000 infected patients and more than 50 million people at the risk. As the dog is the main, definitive host, the Government of China encourages monthly praziquantel treatment of every dog. However, this is difficult to achieve in geographically challenging areas, such as the Tibetan plateau, where there are also many dogs without owners. To overcome these problems, we investigated the transmission blocking capacity of a slow-release formulation of praziquantel administered by subcutaneous injection. METHODS: The impact of a slow-release preparation of two pharmacokinetically stereoselective praziquantel enantiomers, i.e., R-(−)-praziquantel (R-PZQ) and S-(+)-praziquantel (S-PZQ) absorbed into a biodegradable polymer was studied in beagle dogs (N = 6). The preparation was given by subcutaneous injection using a single dose of 100 mg/kg. Chiral-selective, high-performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) were applied to measure the praziquantel enantiomers in the plasma of the dogs. The lower limit for estimating plasma concentrations accurately for R-PZQ was 4 ng/ml and for S-PZQ 20 ng/ml. The pharmacokinetic parameters were calculated by a noncompartmental analysis model using Drug Analyze System (DAS) software 2.0. The SPSS 19.0 software was used for statistical analysis, and the statistical comparison between enantiomers was assessed using the two-tailed t-test. RESULTS: Two hours after administration, peak concentrations of R-PZQ and S-PZQ: 321 ± 26 and 719 ± 263 ng/ml, respectively, were achieved. After 180 days, the average plasma concentration of R-PZQ in the six dogs had decreased to 13 ng/ml. The average concentration value of S-PZQ was higher than that of R-PZQ in the first 90-day period but fell afterwards and could not be accurately estimated when dropping below 20 ng/ml (the lower methodological limit for this enantiomer). Taking all the dogs into account, the average maximum concentration (C(max)) of S-PZQ in plasma over the first 3 months was higher than that of R-PZQ by 114.0% (P < 0.05), while the average mean retention time (MRT) of R-PZQ in plasma was higher than that of S-PZQ by 96.3% (P < 0.05). CONCLUSIONS: Praziquantel given as an in situ slow-release formulation by subcutaneous injection resulted in concentrations of the active principle in beagle dogs, which should be capable of resisting new Echinococcus infections for at least 6 months. The new formulation of praziquantel represents a potential, alternative way of presenting medication against tapeworm infections in dogs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40249-017-0357-4) contains supplementary material, which is available to authorized users.